US ERA ARCHIVE DOCUMENT TABLE A-3-1 CHEMICAL-SPECIFIC INPUTS FOR ACENAPHTHENE (83-32-9) | Parameter | Reference and Explanation | Equations | Value | | | |--------------------------------------|---|---|--------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 154.21 | | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 368.1 | | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 4.93E-06
at 25°C
(solid) | | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 3.80E+00 | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.00E-04 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.21E-02 | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 7.19E-06 | | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 9.22E+03 | | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 4.90E+03 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 4.90E+01 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18;
B-4-24 | 3.67E+02 | | | ## TABLE A-3-1 CHEMICAL-SPECIFIC INPUTS FOR ACENAPHTHENE (83-32-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-25 | 1.96E+02 | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 2.48E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 2.69E+02 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 5.48E+00 | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.98E-01 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.98E-01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for leafyaboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 4.66E+00 | CHEMICAL-SPECIFIC INPUTS FOR ACENAPHTHENE (83-32-9) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 4.66E+00 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 7.32E-05 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.31E-04 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 2.80E-04 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 7.32E-02 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.83E-04 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 |
6.07E+02 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 6.00E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 2.10E-01 | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | #### CHEMICAL-SPECIFIC INPUTS FOR ACENAPHTHENE (83-32-9) | Parameter | Reference and Explanation | Equations | Value | |---|---------------------------|-----------|-------| | Health Benchmarks (continued) | | | | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available TABLE A-3-2 CHEMICAL-SPECIFIC INPUTS FOR ACETALDEHYDE (75-07-0) | Parameter | Reference and Explanation | Equations | Value | |---------------------------------------|---|---|----------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 44.05 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 149.6 | | Vp (atm) | | | ND | | S (mg/L) | | | ND | | H (atm·m³/mol) | | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | ND | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.72E-01 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.33E-05 | | K_{ow} (unitless) | Recommended K_{ow} value cited in Karickhoff and Long (1995). | | 6.02E-01 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | - | 9.53E-01 | | K d_s (cm³/g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 9.53E-03 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 7.15E-02 | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.81E-02 | ## TABLE A-3-2 CHEMICAL-SPECIFIC INPUTS FOR ACETALDEHYDE (75-07-0) | Parameter | Reference and Explanation | Equations | Value | | |---|--|--|----------|--| | Chemical/Physical Properties (Continued) | | | | | | ksg (year)-1 | Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0 | | | Fv (unitless) | Fv value was assumed to be 1.0 due to a lack of data. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | | Biotransfer Factors for Plants | | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.46E+00 | | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 6.78E+02 | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 5.19E+01 | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 5.19E+01 | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | ND | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | ND | | ### CHEMICAL-SPECIFIC INPUTS FOR ACETALDEHYDE (75-07-0) **TABLE A-3-2** | Parameter | Reference and Explanation | Equations | Value | | |---|---|-----------|----------|--| | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 4.78E-09 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.51E-08 | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.83E-08 | | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 4.78E-06 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.19E-08 | | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 4.00E-01 | | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1996d) | C-1-8 | 2.6E-03 | | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1996d) | C-1-7 | 7.7E-03 | | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 9.00E-03 | | | Inhalation URF
(μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 2.20E-06 | | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 7.70E-03 | | Note: NA = Not applicable ND = No data available # TABLE A-3-3 CHEMICAL-SPECIFIC INPUTS FOR ACETONE (67-64-1) | Parameter | Reference and Explanation | Equations | Value | | | |--------------------------------------
---|---|---------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 58.08 | | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 179.1 | | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 2.99E-01
at 25°C
(liquid) | | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 6.04E+05 | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.88E-05 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.87E-01 | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.15E-05 | | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994g). | | 6.00E-01 | | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 9.51E-01 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 9.51E-03 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 7.13E-02 | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.80E-02 | | | # TABLE A-3-3 CHEMICAL-SPECIFIC INPUTS FOR ACETONE (67-64-1) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991) | B-1-2; B-2-2;
B-3-2; B-4-2 | 3.61E+01 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in the table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.46E+00 | | $Br_{root veg} = \frac{(\mu g/g DW plant)}{\mu g/g soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 6.80E+02 | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produceand forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 5.20E+01 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegorund and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 5.20E+01 | | $Bv_{ag} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ | $Bv_{leafy\ veg}$ value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for abovegorund produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.13E-03 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.13E-03 | ## TABLE A-3-3 CHEMICAL-SPECIFIC INPUTS FOR ACETONE (67-64-1) | Parameter | Reference and Explanation | Equations | Value | | | |--|---|-----------|----------|--|--| | | Biotransfer Factors for Animals | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 4.77E-09 | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.51E-08 | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.82E-08 | | | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 4.77E-06 | | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.19E-08 | | | | BCF _{fish} (L/kg FW tissue) | $BCFs$ were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF values were geometric mean laboratory or field derived values obtained from various literature sources cited in U.S. EPA (1998)—See Appendix A-3. | B-4-26 | 4.00E-01 | | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | | Health Benchmarks | | | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 1.00E-01 | | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human
body weight of 70 kg. | C-2-3 | 3.50E-01 | | | | Inhalation URF
(µg/m³) ⁻¹ | | C-2-1 | ND | | | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | | | Note: NA = Not applicable ND = No data available CHEMICAL-SPECIFIC INPUTS FOR ACETONITRILE (75-05-8) | Parameter | Reference and Explanation | Equations | Value | | | |---------------------------------------|---|---|--------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 41.05 | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 318.1 | | | | Vp (atm) | Howard (1989-1993) | | 1.20E-01
at 25°C
(solid) | | | | S (mg/L) | Howard (1989-1993) | | 1.30E-01 | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.79E+01 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.14E-01 | | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.40E-05 | | | | K_{ow} (unitless) | $\log K_{ow}$ value cited in Karickhoff and Long (1995). | | 4.57E-01 | | | | K _{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 7.69E-01 | | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 7.69E-03 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 5.76E-02 | | | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.07E-02 | | | ## TABLE A-3-4 CHEMICAL-SPECIFIC INPUTS FOR ACETONITRILE (75-05-8) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 9.03E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The valus was then converted to a dry wight basis by using a moisture content of 87 percent. | B-2-10 | 6.43E+00 | | $Br_{root veg} = \frac{(\mu g/g DW plant)}{\mu g/g soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 8.37E+02 | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegrouns produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 6.09E+01 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegorund produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 6.09E+01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 6.41E-10 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 6.41E-10 | TABLE A-3-4 CHEMICAL-SPECIFIC INPUTS FOR ACETONITRILE (75-05-8) | Parameter | Reference and Explanation | Equations | Value | | | |--|--|-----------|----------|--|--| | | Biotransfer Factors for Animals | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 3.63E-09 | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.15E-08 | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.39E-08 | | | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 3.63E-06 | | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 9.06E-09 | | | | BCF _{fish} (L/kg FW tissue) | $BCFs$ were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow}
obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 3.25E-01 | | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | | Health Benchmarks | | | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 6.00E-03 | | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 2.10E-02 | | | | Inhalation URF
(μg/m³)-1 | | C-2-1 | ND | | | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | | | Note: NA = Not applicable ND = No data available CHEMICAL-SPECIFIC INPUTS FOR ACETOPHENONE (98-86-2) | Parameter | Reference and Explanation | Equations | Value | |--|---|---|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neill, Smith, and Heckelman (1989) | | 120.50 | | $T_m(K)$ | Budavari, O'Neill, Smith, and Heckelman (1989) | | 293.6 | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 5.20E-04
at 25°C
(solid) | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 6.10E+03 | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the <i>MW</i> , <i>S</i> , and <i>Vp</i> values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.03E-05 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 6.00E-02 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 8.73E-06 | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 4.37E+01 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans as cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 2.69E+01 | | <i>Kd_s</i> (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.69E-01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 2.02E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.08E+00 | CHEMICAL-SPECIFIC INPUTS FOR ACETOPHENONE (98-86-2) | Parameter | Reference and Explanation | Equations | Value | | | |---|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | ksg (year) ⁻¹ | Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | | | Biotransfer Factors for Plants | | | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.06E+01 | | | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 3.92E+01 | | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 4.37E+00 | | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 4.37E+00 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 3.04E-01 | | | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 3.04E-01 | | | CHEMICAL-SPECIFIC INPUTS FOR ACETOPHENONE (98-86-2) | Parameter | Reference and Explanation | Equations | Value | |--|--|-----------|----------| | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 3.47E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.10E-06 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.33E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value
that is provided in this table. | B-3-13 | 3.47E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 8.66E-07 | | BCF _{fish} (L/kg FW tissue) | $BCFs$ were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.04E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 1.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>Oral RfD</i> using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-3 | 3.50E-01 | | <i>Inhalation URF</i> (μg/m³)-1 | | C-2-1 | ND | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA= Not applicable ND= No data available ## TABLE A-3-6 CHEMICAL-SPECIFIC INPUTS FOR ACROLEIN (107-02-8) | Parameter | Reference and Explanation | Equations | Value | | | |--------------------------------------|---|---|---------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 56.06 | | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 185.1 | | | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 3.50E-01
at 25°C
(liquid) | | | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 2.10E+05 | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 9.34E-05 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.92E-01 | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.22E-05 | | | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 9.80E-01 | | | | K _{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 1.39E+00 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.39E-02 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.05E-01 | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 5.57E-02 | | | ## TABLE A-3-6 CHEMICAL-SPECIFIC INPUTS FOR ACROLEIN (107-02-8) | Parameter | Reference and Explanation | Equations | Value | | | |---|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | ksg (year)-1 | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 9.03E+00 | | | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | | | Biotransfer Factors for Plants | | | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.54E+00 | | | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 4.69E+02 | | | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 3.92E+01 | | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 3.92E+01 | | | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 5.86E-04 | | | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 5.86E-04 | | | ### TABLE A-3-6 CHEMICAL-SPECIFIC INPUTS FOR ACROLEIN (107-02-8) | Parameter | Reference and Explanation | Equations | Value | | |---|---|-----------|----------|--| | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 7.78E-09 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.46E-08 | | | Ba _{pork} (day/kg FW) | Ba_{pork}
value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 2.98E-08 | | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 7.78E-06 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.94E-08 | | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 5.80E-01 | | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997c) | C-1-8 | 2.0E-02 | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | RfC (mg/m ³) | U.S. EPA (1997) | C-2-3 | 2.0E-05 | | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | | Note: NA= Not applicable ND= No data available TABLE A-3-7 CHEMICAL-SPECIFIC INPUTS FOR ACRYLONITRILE (107-13-1) | Parameter | Reference and Explanation | Equations | Value | | | |---------------------------------------|---|---|---------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 53.06 | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 189.6 | | | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 1.40E-01
at 25°C
(liquid) | | | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 7.50E+04 | | | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 9.90E-05 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.11E-01 | | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.23E-05 | | | | K _{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 1.78E+00 | | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 2.22E+00 | | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.22E-02 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.66E-01 | | | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 8.88E-02 | | | ## TABLE A-3-7 CHEMICAL-SPECIFIC INPUTS FOR ACRYLONITRILE (107-13-1) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.10E+01 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.67E+00 | | $Br_{root veg} = \frac{(\mu g/g DW plant)}{\mu g/g soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 3.00E+02 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.77E+01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.77E+01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.04E-03 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.04E-03 | ### CHEMICAL-SPECIFIC INPUTS FOR ACRYLONITRILE (107-13-1) **TABLE A-3-7** | Parameter | Reference and Explanation | Equations | Value | | |---|---|-----------|----------|--| | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.41E-08 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was
calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 4.47E-08 | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 5.41E-08 | | | Ba_{eggs} (day/kg FW) | Ba_{eggs} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.41E-05 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 3.53E-08 | | | BCF _{fish} (L/kg FW tissue) | $BCFs$ were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF values were geometric mean laboratory or field derived values obtained from various literature sources cited in U.S. EPA (1998)—See Appendix A-3. | B-4-26 | 4.80E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997c) | C-1-8 | 1.0E-03 | | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 5.4E-01 | | | RfC (mg/m³) | U.S. EPA (1997b) | C-2-3 | 2.0E-03 | | | Inhalation URF
(μg/m³)-1 | U.S. EPA (1997b) | C-2-1 | 6.8E-05 | | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 2.4E-01 | | Note: NA= Not applicable ND= No data available CHEMICAL-SPECIFIC INPUTS FOR ALDRIN (309-00-2) | Parameter | Reference and Explanation | Equations | Value | | |---|---|---|--------------------------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 364.93 | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 377.1 | | | Vp (atm) | Vp value cited in U.S. EPA (1992). | | 2.90E-11
at 25°C
(solid) | | | S (mg/L) | S value cited in U.S. EPA (1992). | | 7.84E-02 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.35E-07 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.43E-02 | | | D_w (cm ² /s) | D_{w} value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 4.40E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994f). | | 1.51E+06 | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 4.87E+04 | | | <i>Kd</i> _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 4.87E+02 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction oF 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 3.65E+03 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.95E+03 | | ## TABLE A-3-8 CHEMICAL-SPECIFIC INPUTS FOR ALDRIN (309-00-2) | Parameter | Reference and Explanation | Equations | Value | | | |--|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991) | B-1-2; B-2-2;
B-3-2; B-4-2 | 4.28E-01 | | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.227 | | | | | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.33E+04 | | | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 2.73E+01 | | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.04E-02 | | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.04E-02 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.58E+06 | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.58E+06 | | | #### CHEMICAL-SPECIFIC INPUTS FOR ALDRIN (309-00-2) **TABLE A-3-8** | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | | Biotransfer
Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.20E-02 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.79E-02 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 4.59E-02 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.20E+01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.99E-02 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . $BCFs$ were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 5.82E+05 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 3.00E-05 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S.EPA (1997b) | C-1-7 | 1.70E+01 | | RfC (mg/m ³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.10E-04 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | U.S.EPA (1997b) | C-2-1 | 4.90E-03 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S.EPA (1997c) | C-2-2 | 1.70E+01 | Note: NA = Not applicable ND = No data available # TABLE A-3-9 CHEMICAL-SPECIFIC INPUTS FOR ANILINE (62-53-3) | Parameter | Reference and Explanation | Equations | Value | |-----------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 93.12 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 266.8 | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 8.80E-04
at 25°C
(liquid) | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 3.60E+04 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.28E-06 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 8.56E-01 | | D_w (cm ² /s) | $D_{\rm w}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.01E-05 | | K _{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 9.55E+00 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans as cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 8.23E+00 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 8.23E-02 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 6.17E-01 | ### CHEMICAL-SPECIFIC INPUTS FOR ANILINE (62-53-3) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.29E-01 | | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | NC DEHNR (1996) | B-1-2; B-2-2;
B-3-2; B-4-2 | 3.20E+01 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 7.63E+00 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A4.3.2 of Appendix A-3). | B-2-10 | 9.27E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with i that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.05E+01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.05E+01 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25° C, by using the H and K_{ow} values that are provided in this table. | B-2-9 | 2.72E-01 | #### **CHEMICAL-SPECIFIC INPUTS FOR ANILINE (62-53-3)** **TABLE A-3-9** | Parameter | Reference and Explanation | Equations | Value | |--
---|-----------|----------| | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-9 | 2.72E-01 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 7.59E-08 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.40E-07 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-12 | 2.90E-07 | | Ba _{eggs} (day/kg FW) | Ba_{eggs} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 7.59E-05 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A4.3.3 of Appendix A-3). | B-3-14 | 1.89E-07 | | BCF _{fish} (L/kg, FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 3.27E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA (1996d) | C-1-8 | 2.9E-04 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 5.7E-03 | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 1.0E-03 | | <i>Inhalation URF</i> (μg/m³)-1 | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 1.6E-03 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on Oral CSF assuming route-to-route extrapolation. | C-2-2 | 5.7E-03 | Note: $$\begin{split} NA &= Not \ applicable \\ ND &= No \ data \ available \\ All \ parameters \ are \ defined \ in \ list \ of \ FATE \ AND \ TRANSPORT \ PARAMETERS \ on \ page \ A-3-iii. \end{split}$$ ## TABLE A-3-9 CHEMICAL-SPECIFIC INPUTS FOR ANILINE (62-53-3) ### CHEMICAL-SPECIFIC INPUTS FOR ANTHRACENE (120-12-7) | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------------|---|---|--------------------------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 178.22 | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 491.1 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c) | | 3.35E-08
at 25°C
(solid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c) | | 5.37E-02 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.11E-04 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.24E-02 | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 7.74E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c) | | 2.95E+04 | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 2.35E+04 | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.35E+02 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.76E+03 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 9.40E+02 | | | | Chemical/Physical Properties (Continued) | | | | | ksg (year) ⁻¹ | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 5.50E-01 | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1; | 1.0 | | ### CHEMICAL-SPECIFIC INPUTS FOR ANTHRACENE (120-12-7) | Parameter | Reference and Explanation | Equations | Value | | |--|---|-----------|----------|--| | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.49E+02 | | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 2.76E+00 | | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.01E-01 | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is
provided in this table. | B-3-9 | 1.01E-01 | | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 2.90E+01 | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 2.90E+01 | | | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 2.34E-04 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 7.41E-04 | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 8.98E-04 | | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 2.34E-01 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 5.85E-04 | | #### CHEMICAL-SPECIFIC INPUTS FOR ANTHRACENE (120-12-7) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BCF _{fish} (L/kg FW tissue) | _ | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). FCM s were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 2.60E+03 | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 3.0E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from \it{RfD} using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-3 | 1.1E+00 | | Inhalation URF (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA= Not applicable; ND= No data available ## TABLE A-3-11 CHEMICAL-SPECIFIC INPUTS FOR ANTIMONY (7440-36-0) | Parameter | Reference and Explanation | Equations | Value | | |------------------------------|--|---|--------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 121.75 | | | T_m (°K) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 903.1 | | | Vp (atm) | All metals, except mercury, are assumed to be nonvolatile at ambient temperatures. | | 0.0 | | | S (mg/L) | All metals, except mercury, are assumed to be insoluble in water. | | NA | | | H (atm·m³/mol) | ${\cal H}$ value is assumed to be zero, because the ${\cal V}p$ and ${\cal S}$ values are zero for all metals, except mercury. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 0.0 | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 7.73E-02 | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 8.96E-06 | | | K_{ow} (unitless) | | | NA | | | K_{oc} (mL/g) | | | NA | | | Kd _s (mL/g) | <i>Kd</i> _s value was obtained from U.S. EPA (1996a), which provides pH-based values that were estimated by using the MINTEQ2 geochemical speciation model. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 45 at pH=6.8 | | | Kd_{sw} (L/Kg) | Kd_{sw} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16; B-4-18;
B-4-24 | 45 at pH=6.8 | | | Kd_{bs} (mL/g) | Kd_{bs} value is assumed to be same as the Kd_{s} value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16; B-4-25 | 45 at pH=6.8 | | | ksg (year) ⁻¹ | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | Fv (unitless) | Because they are nonvolatile, metals are assumed to be 100 percent in particulate phase and zero percent in the vapor phase, as cited in U.S. EPA (1994f). | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.0 | | Bapork (day/kg FW) **TABLE A-3-11** CHEMICAL-SPECIFIC INPUTS FOR ANTIMONY (7440-36-0) #### **Parameter** Reference and Explanation **Equations** Value **Biotransfer Factors for Plants** RCFB-2-10 ND $(\mu g/g \ DW \ plant)$ μg/mL soil water $Br_{rootveg}$ value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth (such as tubers) in Baes, Sharp, Sjoreen, and $Br_{rootveg}$ B-2-10 3.00E-02 $(\mu g/g \ DW \ plant)$ Shor (1984) were used for $Br_{rootveg}$. $\mu g/g$ soil Br_{ag} value for fruits was obtained from Baes, Sharp, Sjoreen, and Shor (1984). B-2-9 3.19E-02 Br_{ag} Br values for nonvegetative growth (reproductive) in Baes, Sharp, Sjoreen, and $(\frac{\mu g/g \ DW \ plant}{})$ Shor (1984) were used for Br_{ag} (fruits). Br_{ag} value for vegetables was calculated using data obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative (reproductive) growth and Bv values for vegetative $\mu g/g$ soil growth weighted as 75% (reproductive) and 25% vegetative (Baes, Sharp, Sjoreen, and Shor [1984])—were used for Br_{ag} (vegetables). The weighted average Br_{ag} value for aboveground produce was obtained as follows: (1) Br_{ag} values for fruits combined with a human consumption rate of fruits of 1.44E-03 kg/kg/day, and (2) Br_{ag} values for vegetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. Br_{forage} Br_{forage} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Bv values for vegetative growth (such as leaves and stems) in Baes, Sharp, B-3-8 2.00E-01 $(\frac{\mu g/g \ DW \ plant}{})$ Sjoreen, and Shor (1984) were used for Br_{forage} . $\mu g/g$ soil Br_{grain} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth as recommended by Baes, Sharp, Sjoreen, and Br_{grain} B-3-8 2.00E-01 $(\frac{\mu g/g \ DW \ plant}{})$ Shor (1984) were used for Br_{erain} . $\mu g/g$ soil Metals are assumed to not experience air-to-leaf transfer, as cited in B-2-8 NA Bv_{ag} U.S. EPA (1995b). $(\mu g/g \ DW \ plant)$ $\mu g/g$ air Bv_{forage} B-3-8 NA Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). $(\frac{\mu g/g \ DW \ plant}{})$ $\mu g/g$ air **Biotransfer Factors for Animals** Ba_{milk} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all 1.0E-04 Ba_{milk} (day/kg FW) B-3-11 metals, except cadmium, mercury, selenium, and zinc. Babeef (day/kg FW) B-3-10 1.0E-03 Babeef values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. **Biotransfer Factors for Animals (Continued)** ND B-3-12 ### TABLE A-3-11 CHEMICAL-SPECIFIC INPUTS FOR ANTIMONY (7440-36-0) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | Ba _{egg} (day/kg FW) | | B-3-13 | ND | | Ba _{chicken} (day/kg FW) | | B-3-14 | ND | | BCF _{fish} (L/kg FW tissue) | Geometric mean value obtained from various literature sources (see Appendix A3.4). | B-4-26 | 4.00E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1995d) | C-1-8 | 4.0E-04 | |
Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.43E-03 | | Inhalation URF (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: ### CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1016 (12674-11-2) **TABLE A-3-12** | Parameter | Reference and Explanation | Equations | Value | |--------------------------------|---|---|---------------------------------| | Chemical/Physical Properties | | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 257.9 | | $T_m(\mathbf{K})$ | | | ND | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 9.37E-07
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 5.71E-01 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 4.23E-04 | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.69E-02 | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 5.43E-06 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 2.53E+05 | | K _{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 2.32E+04 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.32E+02 | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.74E+03 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 9.29E+02 | | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Mackay, Shiu, and Ma (1992). | B-1-2; B-2-2;
B-3-2; B-4-2 | 5.06E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman | B-1-1; B-2-1; | 0.999 | CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1016 (12674-11-2) #### **Parameter** Reference and Explanation **Equations** Value **Biotransfer Factors for Plants** RCFRCF value was calculated by using the correlation equation with K_{ow} that is cited in B-2-10 3.37E+03 Briggs (1982). Recommended value was calculated by using the K_{ow}^{n} value that is provided in this table. The value was converted to a dry weight basis by using a $\mu g/g$ DW plant μg/mL soil water moisture content of 87 percent. $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. B-2-10 1.45E+01 $(\mu g/g \ DW \ plant)$ $\mu g/g$ soil B-2-9 2.91E-02 Br_{ag} Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground $(\frac{\mu g/g \ DW \ plant}{})$ produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. $\mu g/g$ soil Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for Br_{forage} B-3-9 2.91E-02 $(\frac{\mu g/g \ DW \ plant}{})$ abovegroudn produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. $\mu g/g$ soil Bv_{ag} value was calculated by using the correlation equation with K_{ov} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Bv_{ag} B-2-8 7.52E+01 $(\frac{\mu g/g \ DW \ plant}{})$ $\mu g/g$ air Recommended value was calculated, for a temperature (T) of 25° C, by using the H and K_{ow} values that are provided in this table. Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. B-3-8 7.52E+01 Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{})$ $\mu g/g$ air Recommended value was calculated, for a temperature (T) of 25° C, by using the H and K_{aw} values that are provided in this table. **Biotransfer Factors for Animals** Ba_{milk} (day/kg FW) Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in B-3-11 2.01E-03 Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. Ba_{beef} (day/kg FW) Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} B-3-10 6.37E-03 value that is provided in this table. Bapork (day/kg FW) Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and B-3-12 7.71E-03 multiplying it with the Ba_{beef} value. Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value Ba_{egg} (day/kg FW) B-3-13 2.01E+00 that is provided in this table. $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) 5.03E-03 Bachicken (day/kg FW) B-3-14 and multiplying it with the Ba_{beef} value. #### CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1016 (12674-11-2) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). FCM s were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 5.33E+04 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA(1997b) | C-1-8 | 7.00E-05 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 2.5E-04 | | Inhalation URF
(µg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available # TABLE A-3-13 CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1254 (11097-69-1) | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------------
---|---|---------------------------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 327.0 | | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 283.1 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 1.16E-07
at 25°C
(liquid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 1.00E-02 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.79E-03 | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.00E-02 | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 4.64E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.61E+06 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 9.98E+05 | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 9.83E+04 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 7.37E+03 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.93E+03 | | #### CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1254 (11097-69-1) | Parameter | Reference and Explanation | Equations | Value | | |--|---|--|----------|--| | Chemical/Physical Properties (Continued) | | | | | | ksg (year)-1 | Mackay, Shiu, and Ma (1992). | B-1-2; B-2-2;
B-3-2; B-4-2 | 5.06E+00 | | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in the table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.993 | | | | Biotransfer Factors for Plants | | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then ocnverted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.40E+04 | | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.42E+01 | | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.00E-02 | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegorund produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.00E-02 | | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 6.01E+01 | | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 6.01E+01 | | | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.28E-02 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 4.05E-02 | | #### CHEMICAL-SPECIFIC INPUTS FOR AROCLOR 1254 (11097-69-1) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 4.90E-02 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.28E+01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 3.19E-02 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). FCM s were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 6.66E+05 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 2.00E-05 | | Oral
CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 7.0E-05 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | #### Note: NA = Not applicable ND = No data available ### CHEMICAL-SPECIFIC INPUTS FOR ARSENIC (7440-38-2) **TABLE A-3-14** | Parameter | Reference and Explanation | Equations | Value | | | |----------------------------|--|---|--|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 74.92 | | | | <i>T_m</i> (°K) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 1,091 at 36 atm | | | | Vp (atm) | All metals, except mercury, are assumed to be nonvolatile at ambient temperatures. | | 0.0 | | | | S (mg/L) | All metals, except mercury, are assumed to be insoluble in water. | | 0.0 | | | | H (atm·m³/mol) | H value is assumed to be zero, because the Vp and S values are zero for all metals, except mercury. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 0.0 | | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.07E-01 | | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 1.24E-05 | | | | K_{ow} (unitless) | | | NA | | | | K_{oc} (mL/g) | | | NA | | | | Kd _s (mL/g) | <i>Kd_s</i> value was obtained from U.S. EPA (1996a), which provides pH-based values that were estimated by using the MINTEQ2 geochemical speciation model. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 25 at pH=4.9;
29 at pH=6.8;
31 at pH=8.0 | | | | Kd_{sw} (L/Kg) | Kd_{sw} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16; B-4-18;
B-4-24 | 25 at pH=4.9;
29 at pH=6.8;
31 at pH=8.0 | | | | Kd_{bs} (mL/g) | Kd_{bs} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16; B-4-25 | 25 at pH=4.9;
29 at pH=6.8;
31 at pH=8.0 | | | | ksg (year)-1 | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | #### CHEMICAL-SPECIFIC INPUTS FOR ARSENIC (7440-38-2) | Parameter | Reference and Explanation | Equations | Value | | | |--|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | Fv (unitless) | Because they are nonvolatile, metals are assumed to be 100 percent in particulate phase and zero percent in the vapor phase, as cited in U.S. EPA (1994f). | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.0 | | | | | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | | B-2-10 | ND | | | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by multiplying the uptake slope factor with a conversion factor of 2 x 10^9 g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for root vegetables. | B-2-10 | 8.00E-03 | | | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value for fruits was calculated by multiplying the uptake slope factor with a conversion factor of 2 x10 ⁹ g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1993e) for garden fruits. Br_{ag} value for vegetables was calculated by weighting the uptake slope factors for garden fruits (75%) and leafy vegetables (25%) and multiplying the result with a conversion factor of 2 x10 ⁹ g/ha soil. The uptake slope factors and the conversion factor were obtained from U.S. EPA (1993e). The weighted average Br_{ag} value for aboveground produce was obtained as follows: (1) Br_{ag} values for fruits combined with a human consumption rate of fruits of 1.44E-03 kg/kg/day, and (2) Br_{ag} values for vegetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. | B-2-9 | 6.33E-03 | | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by multiplying the uptake slope factor with a conversion factor of 2 x 10 ⁹ g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for leafy vegetables. | B-3-8 | 3.60E-02 | | | | $Br_{grain} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{grain} value was calculated by multiplying the uptake slope factors with a conversion factor of 2 x 10 ⁹ g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for grains/cereals. | B-3-8 | 4.00E-03 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-2-8 | NA | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-3-8 | NA | | | TABLE A-3-14 CHEMICAL-SPECIFIC INPUTS FOR ARSENIC (7440-38-2) | Parameter | Reference and Explanation | Equations | Value | | |---------------------------------------|--|-----------|----------|--| | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-11 | 6.0E-03 | | | Ba _{beef} (day/kg FW) | Ba_{beef} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-10 | 2.0E-03 | | | Ba _{pork} (day/kg FW) | | B-3-12 | ND | | | Ba _{egg} (day/kg FW) | | B-3-13 | ND | | | Ba _{chicken} (day/kg FW) | | B-3-14 | ND | | | BCF _{fish} (L/kg FW tissue) | Geometric mean value obtained from various literature sources (see Appendix A3.4.) | B-4-26 | 2.00E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997c) | C-1-8 | 3.0E-04 | | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 1.5E+00 | | | RfC (mg/m³) | Calculated from \it{RfD} using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-3 | 1.1E-03 | | | Inhalation URF
(µg/m³)-1 | U.S. EPA (1997b) | C-2-1 | 4.3E-03 | | | Inhalation CSF (mg/kg/day)-1 | U.S. EPA (1996d) | C-2-2 | 1.5E+01 | | Note: # TABLE A-3-15 CHEMICAL-SPECIFIC INPUTS FOR ATRAZINE (1912-24-9) | | Chemical/Physical Properties | | | | | |--------------------------------------|---|---|--|--|--| | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 215.68 | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 444.1 | | | | Vp (atm) | Vp value cited in Budavari, O'Neil, Smith, and Heckelman (1989) | | 3.66x10 ⁻¹⁰
at 25°C
(solid) | | | | S (mg/L) | S value cited in Howard and others 1989 - 1993 | | 3.00E+01 | | | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.63E-09 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.80E-02 | | | | D_w (cm ² /s) |
$D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 6.03E-06 | | | | K_{ow} (unitless) | $\log K_{ow}$ value cited in Karickhoff and Long (1995). | | 4.07E+02 | | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 1.54E+02 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.54E+00 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.15E+01 | | | | | Chemical/Physical Properties (Continued) | 1 | 1 | | | #### CHEMICAL-SPECIFIC INPUTS FOR ATRAZINE (1912-24-9) | Parameter | Reference and Explanation | Equations | Value | | |--|---|--|----------|--| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 6.15E+00 | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard (1989-1993). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.04E+01 | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.945 | | | | Biotransfer Factors for Plants | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture ocntent of 87 percent. | B-2-10 | 3.00E+01 | | | $Br_{root veg} $ $(\frac{\mu g/g \; DW \; plant}{\mu g/g \; soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.96E+01 | | | $Br_{ag} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.20E+00 | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.20E+00 | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.28E+04 | | | | Biotransfer Factors for Plants (continued) | | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.28E+04 | | #### CHEMICAL-SPECIFIC INPUTS FOR ATRAZINE (1912-24-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 3.23E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.02E-05 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.24E-05 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 3.23E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 8.07E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 5.67E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 3.5E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 2.2E-01 | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.2E-01 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | Calculated from oral CSF using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-1 | 6.3E-05 | | Inhalation CSF (mg/kg/day) ⁻¹ | Value based on Oral CSF assuming route-to-route extrapolation. | C-2-2 | 2.2E-01 | Note: NA = Not applicable ND = No data available # TABLE A-3-16 CHEMICAL-SPECIFIC INPUTS FOR BARIUM (7440-39-3) | Parameter | Reference and Explanation | Equations | Value | | | |----------------------------|--|---|--|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 137.33 | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 983 | | | | Vp (atm) | All metals, except mercury, are assumed to be nonvolatile at ambient temperatures. | | 0.0 | | | | S (mg/L) | All metals, except mercury, are assumed to be insoluble in water. | | 0.0 | | | | H (atm·m³/mol) | ${\cal H}$ value is assumed to be zero,
because the ${\cal V}p$ and ${\cal S}$ values are zero for all metals, except mercury. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 0.0 | | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 7.14E-02 | | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 8.26E-06 | | | | K_{ow} (unitless) | | | NA | | | | K_{oc} (mL/g) | | | NA | | | | Kd_s (mL/g) | <i>Kd_s</i> value was obtained from U.S. EPA (1996a), which provides pH-based values that were estimated by using the MINTEQ2 geochemical speciation model. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 11 at pH=4.9;
41 at pH=6.8;
52 at pH=8.0 | | | | Kd_{sw} (L/Kg) | Kd_{sw} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-18;
B-4-24 | 11 at pH=4.9;
41 at pH=6.8;
52 at pH=8.0 | | | | Kd_{bs} (mL/g) | Kd_{bs} value is assumed to be same as the Kd_{s} value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-25 | 11 at pH=4.9;
41 at pH=6.8;
52 at pH=8.0 | | | | ksg (year) ⁻¹ | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | #### CHEMICAL-SPECIFIC INPUTS FOR BARIUM (7440-39-3) | Parameter | Reference and Explanation | Equations | Value | |--|--|--|----------| | | Chemical/Physical Properties (Continued) | | | | Fv (unitless) | Because they are nonvolatile, metals are assumed to be 100 percent in particulate phase and zero percent in the vapor phase, as cited in U.S. EPA (1994f). | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | | B-2-10 | ND | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth (such as tubers) in Baes, Sharp, Sjoreen, and Shor (1984) were used for $Br_{rootveg}$. | B-2-10 | 1.50E-02 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value for fruits was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth (reproductive) in Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{ag} (fruits). Br_{ag} value for vegetables was calculated using data obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative (reproductive) growth and Bv values for vegetative growth weighted as 75% (reproductive) and 25% vegetative (Baes, Sharp, Sjoreen, and Shor [1984])—were used for Br_{ag} (vegetables). The weighted average Br_{ag} value for aboveground produce was obtained as follows: (1) Br_{ag} values for fruits combined with a human consumption rate of fruits of 1.44E-03 kg/kg/day, and (2) Br_{ag} values for vegetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. | B-2-9 | 3.22E-02 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Bv values for vegetative growth (such as leaves and stems) in Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{forage} . | B-3-8 | 1.50E-01 | | $Br_{grain} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{grain} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth as recommended by Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{grain} . | B-3-8 | 1.50E-02 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-2-8 | NA | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-3-8 | NA | # TABLE A-3-16 CHEMICAL-SPECIFIC INPUTS FOR BARIUM (7440-39-3) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|---------| | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-11 | 3.5E-04 | | Ba _{beef} (day/kg FW) | Ba_{beef} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-10 | 1.5E-04 | | Ba _{pork} (day/kg FW) | | B-3-12 | ND | | Ba _{egg} (day/kg FW) | - | B-3-13 | ND | | Ba _{chicken} (day/kg FW) | - | B-3-14 | ND | | BCF _{fish}
(L/kg FW tissue) | - | B-4-26 | NA | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 7.0E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 5.0E-04 | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: ### CHEMICAL-SPECIFIC INPUTS FOR BENZALDEHYDE (100-52-7) **TABLE A-3-17** | T_m (K) Budavari, O'Neil, Smith, and Heckelman (1989) | -Parameter | Reference and Explanation | Equations | Value | |--|-----------------------------|--|--|----------| | T_m (K) Budavari, O'Neil, Smith, and Heckelman (1989) | | Chemical/Physical Properties | | | | Vp (atm) Vp value cited in NC DEHNR (1997). — 1.30E-03 at 25°C (solid) S (mg/L) S value cited in NC DEHNR (1997). — 3.30E+03 H (atm·m³/mol) H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. B-1-6; B-2-6; B-2-8; B-3-6; B-2-8; B-3-6; B-4-12; B-4-19 D _a (cm²/s)
D _a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). B-1-6; B-2-6; B-4-12; B-4-19 D _a (cm²/s) D _a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). B-1-6; B-2-6; B-3-6; B-4-6; B-4-12; B-4-19 D _a (cm²/s) D _a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). B-4-20 9.48E-06 K _{acc} (unitless) K _{acc} value cited in NC DEHNR (1997). — 3.00E+01 K _{acc} (imL/g) K _{acc} value was calculated by using the correlation equation with K _{acc} for phthalates and PAHs, 'all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate K _{d_{acc}} beast the value value was calculated by using the correlation equation with K _{acc} that is cited in this table. | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 106.12 | | $S (mg/L) \qquad S \text{ value cited in NC DEHNR (1997)}. \qquad \qquad 3.30E+03$ $H (\text{atm-m}^3/\text{mol}) \qquad H \text{ value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. D_u \text{ (cm}^3/\text{s}) \qquad D_u \text{ value was obtained from CHEMDAT8 database (U.S. EPA 1994d)}. \qquad B-1-6; B-2-6; B-3-6; B-4-6; B-3-6; B-4-6; B-3-6; B-4-6; B-3-6; B-4-6; B-3-6; B-4-6; B-3-6; B-3-6; B-4-6; B-3-6; B-4-6; B-3-6; B-3-6; B-4-6; B-3-6; B-3-6; B-3-6; B-4-6; B-3-6; B-3-6; B-3-6; B-3-6; B-3-6; B-3-6; B-3-6; B-4-6; B-3-6; B-$ | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 329.6 | | H (atm·m³/mol) H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. $B-1-6$; $B-2-6$; $B-2-8$; $B-3-6$; $B-4-19$ $B-4-$ | Vp (atm) | Vp value cited in NC DEHNR (1997). | | at 25°C | | Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. D_a (cm²/s) D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). D_a value was calculated by using the correlation equation with K_{oc} for phthalates, K_{oc} value was calculated by using the correlation equation with K_{oc} for phthalates, and E_{oc} value was calculated by using the correlation equation with E_{oc} for phthalates, E_{oc} value was calculated by using the correlation equation with E_{oc} for phthalates, E_{oc} value was calculated by using the recommended E_{oc} value that is provided in this table. E_{oc} value was calculated by using the correlation equation with E_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, section in soil, Recommended E_{oc} value was calculated by using the E_{oc} value that is provided in this table. E_{oc} value was calculated by using the correlation equation with E_{oc} value that is provided in this table. E_{oc} value was calculated by using the correlation equation with E_{oc} value that is provided in this cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment, specific to site conditions, should be used to calculate E_{oc} value was calculated by using the correlation equation with E_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment, specific to site conditions, should be used to calculate E_{oc} because the value varies, depending on the fraction of organic carbon in suspended sediment, specific to site conditions, should be used to calculate E_{oc} value was calculate | S (mg/L) | S value cited in NC DEHNR (1997). | | 3.30E+03 | | $D_{w} \text{ (cm}^{2}/\text{s)} \qquad D_{w} \text{ value was obtained from CHEMDAT8 database (U.S. EPA 1994d)}. \qquad B-4-20 \qquad 9.48E-06$ $K_{ow} \text{ (unitless)} \qquad K_{ow} \text{ value cited in NC DEHNR (1997)}. \qquad$ | H (atm·m³/mol) | Rosenblatt (1982), which defines the constant. Recommended value was calculated | B-2-8; B-3-6;
B-4-6; B-4-12; | 4.18E-05 | | K_{ow} (unitless) K_{ow} value cited in NC DEHNR (1997). Some value cited in NC DEHNR (1997). K_{ow} (mL/g) K_{ow} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{ow} value was calculated by using the recommended K_{ow} value that is provided in this table. Kd, value was calculated by using the correlation equation with K_{ow} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s, because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{ow} value that is provided in this table. Kd_{sw} (L/Kg) Kd_{sw} value was calculated by using the correlation equation with K_{ow} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw}, because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{ow} value that is provided in this table. | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-3-6; B-4-6; | 7.07E-02 | | K_{oc} (mL/g) K_{oc} (mL/g) K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. Kd_{sw} (L/Kg) Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the correlation equation with K_{sw} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.48E-06 | | and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. $Kd_s \text{ (cm}^3/\text{g)}$ $Kd_s \text{ value was calculated by using the correlation equation with } K_{oc} \text{ that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s, because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. Kd_{sw} \text{ (L/Kg)} Kd_{sw} \text{ value was calculated by using the correlation equation with } K_{oc} \text{ that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw}, because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. Kd_{sw} \text{ (L/Kg)}$ | K_{ow} (unitless) | K_{ow} value cited in NC DEHNR (1997). | | 3.00E+01 | | U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. $Kd_{sw} \text{ Value was calculated by using the correlation equation with } K_{oc} \text{ that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw}, because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. Kd_{sw} \text{ value was calculated by using the
correlation equation with } K_{oc} \text{ that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw}, because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table.$ | K_{oc} (mL/g) | and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} | | 2.01E-01 | | U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | Kd_s (cm ³ /g) | U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in | B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10; | 2.01E-01 | | Chemical/Physical Properties (Continued) | Kd _{sw} (L/Kg) | U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value | | 1.51E+00 | | | | Chemical/Physical Properties (Continued) | | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZALDEHYDE (100-52-7) | -Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 8.04E-01 | | ksg (year)-1 | Ksg value assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 9.50 | | $Br_{root veg} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root,veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 4.72E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 5.42E+00 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 5.42E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 5.00E-02 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 5.00E-02 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZALDEHYDE (100-52-7) | -Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Animals | | | | Ba_{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 2.38E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 7.54E-07 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 9.12E-07 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 2.38E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 5.95E-07 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 7.81E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 1.01E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from RfD using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 3.50E-01 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR BENZENE (71-43-2) | Parameter | Reference and Explanation | Equations | Value | | | | |--|---|---|---------------------------------|--|--|--| | | Chemical/Physical Properties | | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 78.11 | | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 278.6 | | | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c).
| | 1.25E-01
at 25°C
(liquid) | | | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 1.78E+03 | | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 5.49E-03 | | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.17E-01 | | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.02E-05 | | | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 137 | | | | | K_{oc} (mL/g) | Geometric mean of measured values was obtained from U.S. EPA (1996b). | | 6.20E+01 | | | | | <i>Kd_s</i> (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 6.20E-01 | | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 4.65E+00 | | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.48E+00 | | | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZENE (71-43-2) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Mackay, Shiu, and Ma (1992). | B-1-2; B-2-2;
B-3-2; B-4-2 | 3.89E+00 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.66E+01 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table (see section A4.3.2 of Appendix A-3). | B-2-10 | 2.67E+01 | | $Br_{ag} = \frac{\mu g/g \ DW \ plant}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.25E+00 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.25E+00 | | $Bv_{ag} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ | Bv_{af} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.92E-03 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.92E-03 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.09E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.44E-06 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZENE (71-43-2) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-12 | 4.17E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.09E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-14 | 2.72E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 2.48E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | Calculated from the <i>RfC</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-1-8 | 1.70E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 2.90E-02 | | RfC (mg/m ³) | U.S.EPA (1997e) | C-2-3 | 6.00E-02 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 8.30E-06 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 2.90E-02 | Note: NA = Not applicable ND = No data available CHEMICAL-SPECIFIC INPUTS FOR BENZ(A)ANTHRACENE (56-55-3) #### **Parameter** Reference and Explanation **Equations** Value **Chemical/Physical Properties** Budavari, O'Neil, Smith, and Heckelman (1989) 228.28 MW (g/mole) $T_m(\mathbf{K})$ Budavari, O'Neil, Smith, and Heckelman (1989) 433 Geometric mean value cited in U.S. EPA (1994c). 2.03E-10 Vp (atm) at 25°C (solid) S (mg/L)Geometric mean value cited in U.S. EPA (1994c). 1.28E-02 B-1-6; B-2-6; B-2-8; B-3-6; B-4-6; B-4-12; $H (atm \cdot m^3/mol)$ H value was calculated by using the theoretical equation from Lyman, Reehl, and 3.62E-06 Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S and Vp values that are provided in this table. B-4-19 D_a (cm²/s) D_a value was
obtained from CHEMDAT8 database, U.S. EPA (1994d). B-1-6; B-2-6; 2.47E-02 B-3-6; B-4-6; B-4-21 B-4-20 D_w value was obtained from CHEMDAT8 database, U.S. EPA (1994d). 6.21E-06 D_w (cm²/s) 4.77E+05 K_{ow} (unitless) Geometric mean value cited in U.S. EPA (1994c). K_{oc} (mL/g) Geometric mean of measured values was obtained from U.S. EPA (1996b). 2.60E + 05 Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured Kd_s (mL/g) B-1-3; B-1-4; 2.60E+03B-1-5; B-1-6; B-2-3; B-2-4; organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , B-2-5; B-2-6; B-2-10; B-3-3; because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in B-3-4; B-3-5; this table. B-3-6; B-4-3; B-4-4; B-4-5; B-4-6; B-4-10; B-4-11 Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended 1.95E+04 Kd_{sw} (L/Kg) B-4-16; B-4-18; B-4-24 sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw}^{J} because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. Kd_{bs} (mL/g) Kd_{hs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom B-4-16; B-4-25 1.04E+04 sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{ac} value that is provided in this table. #### CHEMICAL-SPECIFIC INPUTS FOR BENZ(A)ANTHRACENE (56-55-3) | Parameter | Reference and Explanation | Equations | Value | |--|--|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 3.72E-01 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 8.81E-01 | | | Biotransfer Factors for Plants | | | | RCF $ \frac{(\mu g/g \ DW \ plant)}{\mu g/mL \ soil \ water} $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis using a moisture content of 87 percent. | B-2-10 | 5.48E+03 | | $Br_{root veg} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A4.3.2 of Appendix A-3). | B-2-10 | 2.11E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.02E-02 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.02E-02 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi. (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi. (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.72E+04 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi. (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.72E+04 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 3.79E-03 | | | <u> </u> | | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZ(A)ANTHRACENE (56-55-3) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.20E-02 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-12 | 1.45E-02 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 3.79E+00 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A4.3.3 of Appendix A-3). | B-3-14 | 9.46E-03 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with a geometric mean of various laboratory measured $BCFs$ obtained from various experimental studies cited in U.S. EPA (1998). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 5.10E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | calculated by multiplying the <i>Oral CSF</i> for Benzo(a)pyrene by the relative potency factor for Benzo(a)anthracene of 0.1 (U.S.EPA 1993e) | C-1-7 | 7.31E-01 | | RfC (mg/m ³) | | C-2-3 | ND | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 2.10E-04 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 7.31E-01 | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR BENZO(A)PYRENE (50-32-8) **TABLE A-3-20** | Parameter | Reference and Explanation | Equations | Value | |----------------------------|---
--|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 252.3 | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 452 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c) | | 6.43E-12
at 25°C
(solid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c) | | 1.94E-03 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 8.36E-07 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database in U.S. EPA (1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.18E-02 | | D_w (cm ² /s) | $D_{\rm w}$ value was obtained from CHEMDAT8 database in U.S. EPA (1994d). | B-4-20 | 5.85E-06 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.35E+06 | | K_{oc} (mL/g) | Geometric mean of measured values was obtained from U.S. EPA (1996b). | | 9.69E+05 | | Kd_s (mL/g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-3-3; B-3-4;
B-3-5; B-3-6;
B-4-3; B-4-4;
B-4-5; B-4-6;
B-4-10; B-4-11 | 9.69E+03 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 7.27E+04 | | Kd _{bs} (mL/g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-25; B-2-10 | 3.87E+04 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(A)PYRENE (50-32-8) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991) | B-1-2; B-2-2;
B-3-2; B-4-2 | 4.77E-01 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 2.65E-01 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.22E+04 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see Section A3.4.2 of Appendix A-3). | B-2-10 | 1.26E+00 | | $Br_{ag} = \frac{\mu g/g \ DW \ plant}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.11E-02 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.11E-02 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 2.25E+05 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 2.25E+05 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.07E-02 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.38E-02 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(A)PYRENE (50-32-8) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A3.4.2 in Appendix A-3). | B-3-12 | 4.10E-02 | | $Ba_{egg}(ext{day/kg FW})$ | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.07E+01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A3.4.3 in Appendix A-3). | B-3-14 | 2.67E-02 | | BCF _{fish} (L/kg, FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with a geometric mean of various laboratory measured $BCFs$ obtained from various experimental studies cited in U.S. EPA (1998). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 9.95E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 7.30E+00 | | RfC (mg/m ³) | | C-2-3 | ND | | Inhalation URF
(μg/m³)-1 | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 2.10E-03 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 7.30E+00 | Note: NA = Not applicable ND = No data available # TABLE A-3-21 CHEMICAL-SPECIFIC INPUTS FOR BENZO(B)FLUORANTHENE
(205-99-2) | Parameter | Reference and Explanation | Equations | Value | | |----------------------------|---|---|--------------------------------|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 252.32 | | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 441 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c) | | 1.06E-10
at 25°C
(solid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c) | | 4.33E-03 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 6.18E-06 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database U.S. EPA (1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.28E-02 | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database U.S. EPA (1994d). | B-4-20 | 5.49E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.59E+06 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 8.36E+05 | | | Kd _s (mL/g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 8.36E+03 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 6.27E+04 | | | Kd_{bs} (mL/g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.34E+04 | | | | Chemical/Physical Properties (Continued) | | | | | ksg (year)-1 | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 4.15E-01 | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(B)FLUORANTHENE (205-99-2) | Parameter | Reference and Explanation | Equations | Value | | | |---|---|--|-----------|--|--| | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.822 | | | | | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | RCF value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.39E+04 | | | | $Br_{root veg} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.66E+00 | | | | $Br_{ag} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.007E-02 | | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.007E-02 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 3.65E+04 | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 3.65E+04 | | | | | Biotransfer Factors for Animals | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.27E-02 | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 4.00E-02 | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 4.84E-02 | | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(B)FLUORANTHENE (205-99-2) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | Ba_{eggs} (day/kg FW) | Ba_{eggs} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.27E+01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 3.16E-02 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with a geometric mean of various laboratory measured $BCFs$ obtained from
various experimental studies cited in U.S. EPA (1998). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 9.95E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | Calculated by multiplying the <i>Oral CSF</i> for Benzo(a)pyrene by the relative potency factor for Benzo(b)fluoranthene of 0.1 (U.S.EPA 1993e). | C-1-7 | 7.3E-01 | | RfC (mg/m ³) | | C-2-3 | ND | | Inhalation URF
(μg/m³) ⁻¹ | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 2.1E-01 | | Inhalation CSF (mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 7.3E-01 | Note: NA= Not applicable ND= No data available ### CHEMICAL-SPECIFIC INPUTS FOR BENZO(K)FLUORANTHENE (207-08-9) **TABLE A-3-22** | Parameter | Reference and Explanation | Equations | Value | | |----------------------------|---|---|--------------------------------|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 252.32 | | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 490 | | | Vp (atm) | U.S. EPA (1994b) | | 1.32E-12
at 25°C
(solid) | | | S (mg/L) | U.S. EPA (1994b) | | 8.0E-04 | | | H (atm·m³/mol) | $\it H$ value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the $\it MW$, $\it S$ and $\it Vp$ values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 4.15E-07 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database U.S. EPA (1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.28E-02 | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database U.S. EPA (1994d). | B-4-20 | 5.49E-06 | | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995) | | 1.56E+06 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 8.32E-05 | | | Kd _s (mL/g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 8.32E+03 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 6.24E+04 | | | Kd_{bs} (mL/g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.33E+04 | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(K)FLUORANTHENE (207-08-9) | Parameter | Reference and Explanation | Equations | Value | |--|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Lyman, Reehl, and Rosenblatt (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.18E-01 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.149 | | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.38E+04 | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.66E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.01E-02 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.01E-02 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 5.40E+05 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 5.40E+05 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.26E-02 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.98E-02 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZO(K)FLUORANTHENE (207-08-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 4.82E-02 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by
using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.26E+01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 3.14E-02 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with a geometric mean of various laboratory measured $BCFs$ obtained from various experimental studies cited in U.S. EPA (1998). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 9.95E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | Calculated by multiplying the <i>Oral CSF</i> for Benzo(a)pyrene by the relative potency factor for benzo(k)fluoranthene of 0.01 (U.S.EPA 1993?) | C-1-7 | 7.3E-02 | | RfC (mg/m ³) | | C-2-3 | ND | | Inhalation URF (µg/m³)-1 | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 2.1E-05 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 7.3E-02 | Note: NA = Not applicable ND = No data available # TABLE A-3-23 CHEMICAL-SPECIFIC INPUTS FOR BENZOIC ACID (65-85-0) | Parameter | Reference and Explanation | Equations | Value | | |---|---|---|---|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 122.12 | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 395.5 | | | Vp (atm) | Vp value cited in U.S. EPA (1992a). | 1 | 8.57E-06
at 25°C
(solid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 3.15E+03 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.22E-07 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 5.36E-02 | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 8.80E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 7.60E+01 | | | K_{oc} (mL/g) | For all ionizing organics, K_{oc} values were estimated on the basis of pH. Estimated values were obtained from U.S. EPA (1994c). | | pH K _{oc} 1 31.98 2 31.80 3 30.13 4 19.81 5 4.81 6 0.99 7 0.55 8 0.50 9 0.50 10 0.50 11 0.50 12 0.50 13 0.50 14 0.50 | | | <i>Kd</i> _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 5.50E-03 | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZOIC ACID (65-85-0) | Parameter | Reference and Explanation | Equations | Value | | | |---|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 4.13E-02 | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.20E-02 | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited Howard (1989-1993). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.26E+02 | | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | | | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.28E+01 | | | | $Br_{root veg} = \frac{(\mu g/g DW plant)}{\mu g/g soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 2.33E+03 | | | | $Br_{ag} = \frac{\mu g/g \ DW \ plant}{\mu g/g \ soil}$ | Br_{agg} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 3.17E+00 | | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 3.17E+00 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.69E+01 | | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZOIC ACID (65-85-0) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by
using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.69E+01 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 6.04E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.91E-06 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 2.31E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 6.04E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.51E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.58E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S.EPA (1997b) | C-1-8 | 4.00E+00 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.40E+01 | | | Health Benchmarks (continued) | | | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR BENZONITRILE (100-47-0) **TABLE A-3-24** | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------|---|--|----------|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 103.12 | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 285.85 | | | Vp (atm) | | | ND | | | S (mg/L) | | | ND | | | H (atm·m³/mol) | | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | ND | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 7.45E-02 | | | D_w (cm ² /s) | D_{w} value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.43E-06 | | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 3.63E+01 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 2.33E+02 | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-3-3; B-3-4;
B-3-5; B-3-6;
B-4-3; B-4-4;
B-4-5; B-4-6;
B-4-10; B-4-11 | 2.33E+00 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.75E+01 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 9.33E+00 | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZONITRILE (100-47-0) | Parameter | Reference and Explanation | Equations | Value | |---|--|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was assumed to be 0 due to a lack of data. | B-1-1; B-1-2;
B-2-1; B-2-2;
B-3-1; B-3-2;
B-4-1; B-4-2 | 0.0 | | Fv (unitless) | Fv value was assumed to be 1.0 due to a lack of data. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | | 1.00E+01 | | $Br_{root veg} = \frac{(\frac{\mu g/g \; DW \; plant}{\mu g/g \; soil})}{\mu g/g \; soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 4.29E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 4.86E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 4.86E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | ND | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | ND | | | Biotransfer Factors for Animals | 1 | 1 | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 2.88E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 9.12E-07 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZONITRILE (100-47-0) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.10E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is
cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 2.88E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 7.20E-07 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 9.03E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | BSAF _{fish} (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF (mg/kg/day)-1 | | C-1-7 | ND | | RfC (mg/m³) | | C-2-3 | ND | | Inhalation URF (µg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available # CHEMICAL-SPECIFIC INPUTS FOR BENZYL ALCOHOL (100-51-6) **TABLE A-3-25** | Parameter | Reference and Explanation | Equations | Value | | |------------------------------|---|---|--------------------------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 108.13 | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | - | 288.29 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 1.40E-04
at 25°C
(solid) | | | S (mg/L) | S value cited in U.S. EPA (1992a). | 1 | 4.00E+04 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.78E-07 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 6.89E-02 | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.38E-06 | | | K_{ow} (unitless) | K_{ow} value cited in U.S. EPA (1995b). | | 1.26E+01 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 1.02E+01 | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.02E-01 | | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 7.66E-01 | | | | Chemical/Physical Properties (Continued) | | - | | #### CHEMICAL-SPECIFIC INPUTS FOR BENZYL ALCOHOL (100-51-6) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 4.09E-01 | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard (1989-1993). | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 7.94E+00 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 7.77E+01 | | $Br_{ag} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 8.95E+00 | | $Br_{forage} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 8.95E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 2.19E+00 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 2.19E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZYL ALCOHOL (100-51-6) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.00E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.16E-07 | | Ba _{pork} (day/kg FW) | Ba_{pork}
value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.83E-07 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.00E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.5E-07 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 4.04E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 3.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.10 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available # TABLE A-3-26 CHEMICAL-SPECIFIC INPUTS FOR BENZYL CHLORIDE (100-44-7) | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------|---|---|---------------------------------|--| | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 126.58 | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 225.1 | | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 1.60E-03
at 25°C
(liquid) | | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 4.90E+02 | | | H (atm·m ³ /mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 4.13E-04 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 5.43E-02 | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 8.80E-06 | | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 2.30E+00 | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 2.71E+00 | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.71E-02 | | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 2.03E-01 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.08E-01 | | | | Chemical/Physical Properties (Continued) | | | | | ksg (year)-1 | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 2.09E+01 | | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended | B-1-1; B-2-1; | 1.0 | | # CHEMICAL-SPECIFIC INPUTS FOR BENZYL CHLORIDE (100-44-7) **TABLE A-3-26** | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.75E+00 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 2.49E+02 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.39E+01 | | $Br_{forage} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.39E+01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 3.28E-04 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 3.28E-04 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.83E-08 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 5.78E-08 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 6.99E-08 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.83E-05 | | Ba _{chicken} (day/kg FW) |
$Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 4.56E-08 | #### CHEMICAL-SPECIFIC INPUTS FOR BENZYL CHLORIDE (100-44-7) | Parameter | Reference and Explanation | Equations | Value | | |---|---|-----------|----------|--| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.11E+00 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | | C-1-8 | ND | | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 1.70E-01 | | | RfC (mg/m ³) | | C-2-3 | ND | | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | Calculated from <i>Oral CSF</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-1 | 4.90E-05 | | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 1.70E-01 | | Note: NA = Not applicable ND = No data available # TABLE A-3-27 CHEMICAL-SPECIFIC INPUTS FOR BERYLLIUM (7440-41-7) | Parameter | Reference and Explanation | Equations | Value | | | |----------------------------|--|---|---|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 9.01 | | | | T_m (°K) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 1,560 | | | | Vp (atm) | All metals, except mercury, are assumed to be nonvolatile at ambient temperatures. | | 0.0 | | | | S (mg/L) | All metals, except mercury, are assumed to be insoluble in water. | | 0.0 | | | | H (atm·m³/mol) | ${\cal H}$ value is assumed to be zero, because the ${\cal V}p$ and ${\cal S}$ values are zero for all metals, except mercury. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 0.0 | | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.39E-01 | | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 5.08E-05 | | | | K_{ow} (unitless) | | | NA | | | | K_{oc} (mL/g) | | | NA | | | | Kd _s (mL/g) | Kd_s value was obtained from U.S. EPA (1996a), which provides pH-based values that were estimated by using the MINTEQ2 geochemical speciation model. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 23 at pH=4.9;
790 at pH=6.8;
1.0E+05 at
pH=8.0 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-18;
B-4-24 | 23 at pH=4.9;
790 at pH=6.8;
1.0E+05 at
pH=8.0 | | | | Kd_{bs} (mL/g) | Kd_{bs} value is assumed to be same as the Kd_{s} value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-25 | 23 at pH=4.9;
790 at pH=6.8;
1.0E+05 at
pH=8.0 | | | | ksg (year)-1 | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | #### CHEMICAL-SPECIFIC INPUTS FOR BERYLLIUM (7440-41-7) | Parameter | Reference and Explanation | Equations | Value | |--|--|--|----------| | | Chemical/Physical Properties (Continued) | | | | Fv (unitless) | Because they are nonvolatile, metals are assumed to be 100 percent in particulate phase and zero percent in the vapor phase, as cited in U.S. EPA (1994f). | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.0 | | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | | B-2-10 | ND | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth (such as tubers) in Baes, Sharp, Sjoreen, and Shor (1984) were used for $Br_{rootveg}$. | B-2-10 | 1.50E-03 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value for fruits was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth (reproductive) in Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{ag} (fruits). Br_{ag} value for vegetables was calculated using data obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative (reproductive) growth and Bv values for vegetative growth weighted as 75% (reproductive) and 25% vegetative (Baes, Sharp, Sjoreen, and Shor [1984])—were used for Br_{ag} (vegetables). The weighted average Br_{ag} value for aboveground produce was obtained as follows: (1) Br_{ag} values for fruits combined with a human consumption rate of fruits of 1.44E-03 kg/kg/day, and (2) Br_{ag} values for vegetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. | B-2-9 | 2.58E-03 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Bv values for vegetative growth (such as leaves and stems) in Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{forage} . | B-3-8 | 1.00E-02 | | $Br_{grain} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{grain} value was obtained from Baes, Sharp, Sjoreen, and Shor (1984). Br values for nonvegetative growth as recommended by Baes, Sharp, Sjoreen, and Shor (1984) were used for Br_{grain} . | B-3-8 | 1.50E-03 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-2-8 | NA | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | B-3-8 | NA | TABLE A-3-27 CHEMICAL-SPECIFIC INPUTS FOR BERYLLIUM (7440-41-7) | Parameter | Reference and Explanation | Equations | Value | | |---|--|-----------|----------|--| | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-11 | 9.0E-07 | | | Ba _{beef} (day/kg FW) | Ba_{beef} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all metals, except cadmium, mercury, selenium, and zinc. | B-3-10 | 1.0E-03 | | | Ba _{pork} (day/kg FW) | | B-3-12 | ND | | | Ba_{egg} (day/kg FW) | - | B-3-13 | ND | | | Ba _{chicken} (day/kg FW) | | B-3-14 | ND | | | BCF _{fish} (L/kg FW tissue) | Geometric mean value obtained from various literature sources (see Appendix A3.4). | B-4-26 | 4.20E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.00E-03 | | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 4.3E+00 | | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 2.0E-02 | | | <i>Inhalation URF</i> (μg/m³)-1 | U.S. EPA (1997b) | C-2-1 | 2.4E-03 | | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 8.4E+00 | | Note: #### CHEMICAL-SPECIFIC INPUTS FOR ALPHA-BHC (319-84-6) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------|---
---|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 290.0 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 432.2 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 5.61E-08
at 25°C
(solid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 2.40E+00 | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 6.78E-06 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 0.0191 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 5.04E-06 | | K _{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994g). | | 6.30E+03 | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 1.76E+03 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.76E+01 | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.32E+02 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 7.05E+01 | | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.87E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9; | 1.000 | #### CHEMICAL-SPECIFIC INPUTS FOR ALPHA-BHC (319-84-6) | Parameter | Reference and Explanation | Equations | Value | | | | |---|---|-----------|----------|--|--|--| | | Biotransfer Factors for Plants | | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was hen converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 2.02E+02 | | | | | $Br_{rootveg} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.15E+01 | | | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.47E-01 | | | | | $Br_{forage} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.47E-01 | | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 9.17E+01 | | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 9.17E+01 | | | | | | Biotransfer Factors for Animals | | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 5.00E-05 | | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.58E-04 | | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.92E-04 | | | | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 5.00E-02 | | | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.25E-04 | | | | #### CHEMICAL-SPECIFIC INPUTS FOR ALPHA-BHC (319-84-6) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)(see Appendix A-3). | B-4-26 | 4.54E+02 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | U.S.EPA (1997b) | C-1-7 | 6.30E+00 | | RfC (mg/m ³) | | C-2-3 | ND | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | U.S.EPA (1997b) | C-2-1 | 1.80E-03 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 6.3E+00 | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR BETA-BHC (319-85-7) | Parameter | Reference and Explanation | Equations | Value | | | |--------------------------------------
---|---|--------------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 290.83 | | | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 582.1 | | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 6.45E-10
at 25°C
(solid) | | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 5.42E-01 | | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.46E-07 | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.9E-02 | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 5.40E-06 | | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994g). | | 6.81E+03 | | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 2.14E+03 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.14E+01 | | | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.60E+02 | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 8.56E+01 | | | | | Chemical/Physical Properties (Continued) | | | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 2.04E+00 | | | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1; | 0.999 | | | #### CHEMICAL-SPECIFIC INPUTS FOR BETA-BHC (319-85-7) | Parameter | Reference and Explanation | Equations | Value | | | | |---|---|-----------|----------|--|--|--| | | Biotransfer Factors for Plants | | | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 2.14E+02 | | | | | $Br_{rootveg} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.00E+01 | | | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{leafy\ veg}$ value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.36E-01 | | | | | $Br_{forage} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.36E-01 | | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.95E+03 | | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.95E+03 | | | | | | Biotransfer Factors for Animals | | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 5.41E-05 | | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.71E-04 | | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 2.07E-04 | | | | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 5.41E-02 | | | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.35E-04 | | | | #### CHEMICAL-SPECIFIC INPUTS FOR BETA-BHC (319-85-7) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). <i>BCF</i> values were obtained from U.S. EPA (1995b). <i>BCF</i> fish value cited in U.S. EPA (1995b). | B-4-26 | 4.82E+02 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | U.S.EPA(1997c) | C-1-7 | 1.80E+00 | | RfC (mg/m ³) | | C-2-3 | ND | | Inhalation URF (µg/m³)-1 | U.S.EPA (1997b) | C-2-1 | 1.80E-03 | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 1.8E+00 | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR BIS(2-CHLORETHYL)ETHER (111-44-4) | Parameter | Reference and Explanation | Equations | Value |
--------------------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 143.02 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 223.1 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c) | | 1.76E-03
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c) | | 1.18E+04 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.13E-05 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.40E-02 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 8.70E-06 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c) | | 2.00E+01 | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 7.60E+01 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 7.60E-01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 5.70E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 3.04E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR BIS(2-CHLORETHYL)ETHER (111-44-4) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | ksg (year) ⁻¹ | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.41E+00 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 8.64E+00 | | $Br_{root veg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.14E+01 | | $Br_{ag} = \frac{\mu g/g \ DW \ plant}{\mu g/g \ soil}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 6.85E+00 | | $Br_{forage} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 6.85E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 6.37E-02 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 6.37E-02 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.59E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 5.02E-07 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 6.08E-07 | #### CHEMICAL-SPECIFIC INPUTS FOR BIS(2-CHLORETHYL)ETHER (111-44-4) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.59E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 3.97E-07 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 5.74E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | | C-1-8 | ND | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 1.1E+00 | | RfC (mg/m ³) | | C-2-3 | ND | | Inhalation URF (µg/m³) ⁻¹ | U.S. EPA (1997e) | C-2-1 | 3.3E-04 | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 1.1E+00 | Note: NA= Not applicable ND= No data available #### CHEMICAL-SPECIFIC INPUTS FOR BROMODICHLOROMETHANE (75-27-4) | Parameter | Reference and Explanation | Equations | Value | |---------------------------------------
---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 163.83 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 218.1 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 7.68E-02
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 3.97E+03 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 3.17E-03 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 2.98E-02 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.06E-05 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.06E+02 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans as cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 5.38E+01 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 5.38E-01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 4.03E+00 | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.15E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR BROMODICHLOROMETHANE (75-27-4) | Value | |-------| | | | | | | | | | 7E+01 | | 4E+01 | | 1E+00 | | 1E+00 | | 3E-03 | | 3E-03 | | | | 2E-07 | | 6E-06 | | 3 | #### CHEMICAL-SPECIFIC INPUTS FOR BROMODICHLOROMETHANE (75-27-4) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A3.4.2 of Appendix A-3). | B-3-12 | 3.22E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 8.42E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A3.4.3 of Appendix A-3). | B-3-14 | 2.10E-06 | | BCF _{fish} (L/kg, FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 2.04E+01 | | BAF _{fish} (L/kg FW) | 1 | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.00E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 6.20E-02 | | RfC (mg/m³) | Calculated from RfD using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 7.00E-02 | | Inhalation URF
(μg/m³) ⁻¹ | Calculated from $Oral\ CSF$ using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-1 | 1.80E-05 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 6.20E-02 | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR BROMOFORM (75-25-2) **TABLE A-3-32** | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 252.77 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 280.6 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | 1 | 7.82E-03
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | - | 3.21E+03 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 6.16E-04 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.41E-02 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.03E-05 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 2.24E+02 | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | - | 1.26E+02 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.26E+00 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 9.45E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 5.04E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR BROMOFORM (75-25-2) | Parameter | Reference and Explanation | Equations | Value |
---|--|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.41E+00 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 2.13E+01 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A3.4.2 of Appendix A-3). | B-2-10 | 1.69E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.70E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.70E+00 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 2.89E-02 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992) then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 2.89E-02 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.78E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 5.63E-06 | #### CHEMICAL-SPECIFIC INPUTS FOR BROMOFORM (75-25-2) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A3.4.2 of Appendix A-3). | B-3-12 | 6.81E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.78E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A3.4.3 of Appendix A-3). | B-3-14 | 4.44E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 3.60E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.00E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 7.90E-03 | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 7.00E-02 | | Inhalation URF
(μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 1.10E-06 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 3.90E-03 | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR 4-BROMOPHENYL-PHENYLETHER (101-55-3) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------|---|--|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 249.2 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 291.8 | | Vp (atm) | Vp value cited in Montgomery and Welkom (1991). | | 1.97E-06
at 25°C
(liquid) | | S (mg/L) | | | ND | | <i>H</i> (atm·m³/mol) | | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | ND | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.98E-02 | | D_w (cm ² /s) | D_{w} value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 6.83E-06 | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 1.10E+05 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 1.21E+05 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-3-3; B-3-4;
B-3-5; B-3-6;
B-4-3; B-4-4;
B-4-5; B-4-6;
B-4-10; B-4-11 | 1.21E+03 | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 9.09E+03 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by
using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 4.85E+03 | | ksg (year) ⁻¹ | Ksg value wasassumed to be 0 due to a lack of data. | B-1-1; B-1-2;
B-2-1; B-2-2;
B-3-1; B-3-2;
B-4-1; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman | B-1-1; B-2-1; | 1.00 | #### CHEMICAL-SPECIFIC INPUTS FOR 4-BROMOPHENYL-PHENYLETHER (101-55-3) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | | 1.78E+03 | | $Br_{root veg} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.47E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 4.72E-02 | | $Br_{forage} = \frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 4.72E-02 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | ND | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | ND | | | Biotransfer Factors for Animals | • | • | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 8.74E-04 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.76E-03 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.34E-03 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 8.74E-01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.18E-03 | | BCF _{fish} (unitless FW tissue) | | B-4-26 | NA | #### CHEMICAL-SPECIFIC INPUTS FOR 4-BROMOPHENYL-PHENYLETHER (101-55-3) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . $BCFs$ were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 1.46E+04 | | BSAF _{fish} (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997a) | C-1-8 | 5.80E-02 | | Oral CSF (mg/kg/day)-1 | | C-1-7 | ND | | RfC (mg/m ³) | Calculated from $\it RfD$ using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-3 | 2.03E-01 | | Inhalation URF (µg/m³) ⁻¹ | - | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR BUTYLBENZYLPHTHALATE (85-68-7) **TABLE A-3-34** | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------|---|---|---------------------------------|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Howard (1989-1993) | | 312.39 | | | $T_m(\mathbf{K})$ | Howard (1989-1993) | | 238.0 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 1.58E-08
at 25°C
(liquid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | - | 2.58E+00 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.91E-06 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.65E-02 | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 5.17E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | - | 2.59E+04 | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | - | 1.37E+04 | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.37E+02 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.03E+03 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 5.50E+02 | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 3.61E+01 | | #### CHEMICAL-SPECIFIC INPUTS FOR BUTYLBENZYLPHTHALATE (85-68-7) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Fv (unitless) | Fv value was calculated by using the
equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 9.64E-01 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 5.87E+02 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 4.27E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.09E-01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.09E-01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.46E+03 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.46E+03 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 2.06E-04 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 6.50E-04 | ### CHEMICAL-SPECIFIC INPUTS FOR BUTYLBENZYLPHTHALATE (85-68-7) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | | Biotransfer Factors for Animals (Continued) | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 7.87E-04 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 2.06E-01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 5.13E-04 | | BCF _{fish}
(L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). FCM s were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 2.35E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from \it{RfD} using an inhalation rate of 20 m³/day and a human body weight of 70 kg. | C-2-3 | 7.00E-01 | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicableND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR CADMIUM (7440-43-9) **TABLE A-3-35** | Parameter | Reference and Explanation | Equations | Value | | | |----------------------------|--|---|--|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 112.41 | | | | T_m (°K) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 594.1 | | | | Vp (atm) | All metals, except mercury, are assumed to be nonvolatile at ambient temperatures. | | 0.0 | | | | S (mg/L) | All metals, except mercury, are assumed to be insoluble in water. | | 0.0 | | | | H (atm·m³/mol) | ${\cal H}$ value is assumed to be zero, because the ${\cal V}p$ and ${\cal S}$ values are zero for all metals, except mercury. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 0.0 | | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 8.16E-02 | | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 9.45E-06 | | | | K_{ow} (unitless) | | | NA | | | | K_{oc} (mL/g) | | | NA | | | | Kd _s (mL/g) | <i>Kd_s</i> value was obtained from U.S. EPA (1996a), which provides pH-based values that were estimated by using the MINTEQ2 geochemical speciation model. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 15 at pH=4.9;
75 at pH=6.8;
4.3E+03 at
pH=8.0 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value is assumed to be same as the Kd_s value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-18;
B-4-24 | 15 at pH=4.9;
75 at pH=6.8;
4.3E+03 at
pH=8.0 | | | | Kd_{bs} (mL/g) | Kd_{bs} value is assumed to be same as the Kd_{s} value, because organic carbon does not play a major role in sorption for the metals, as cited in U.S. EPA (1994f). | B-4-16;
B-4-25 | 15 at pH=4.9;
75 at pH=6.8;
4.3E+03 at
pH=8.0 | | | | ksg (year)-1 | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | #### CHEMICAL-SPECIFIC INPUTS FOR CADMIUM (7440-43-9) | Description | Parameter | Reference and Explanation | Equations | Value |
---|--|---|--|----------| | Description | | Chemical/Physical Properties (Continued) | | | | $ Br_{power} = \frac{Pr_{power}}{pg'g \ DW \ plant} = \frac{Pr_{power}}{pg'g \ DW \ plant} = \frac{Pr_{power}}{pg'g \ SWI} $ | Fv (unitless) | particulate phase and zero percent in the vapor phase, as cited in | B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9; | 0.0 | | $\frac{(\mu g/g\ DW\ plant)}{\mu g/mL\ soil\ water}$ $\frac{(\mu g/g\ DW\ plant)}{\mu g/g\ xoil}$ $\frac{Br_{roomeg}}{Br_{gas}}$ $\frac{Br_{roomeg}}{Br_$ | | Biotransfer Factors for Plants | | | | conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for root vegetables. $ Br_{rg} V_{g} V_{$ | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | | B-2-10 | ND | | a conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1993e) for garden fruits. Br_{ag} value for vegetables was calculated by weighting the uptake slope factors and the conversion factor of 2 x 10° g/ha soil. The uptake slope factors and the conversion factor of 2 x 10° g/ha soil. The uptake slope factors and the conversion factor of 2 x 10° g/ha soil. The uptake slope factors and the conversion factor were obtained from U.S. EPA (1993e). The weighted average Br_{ag} values for fruits combined with a human consumption rate of fruits of 1.44E-03 kg/kg/day, and (2) Br_{grain} values for regetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. and (2) Br_{grain} values for regetables combined with a human consumption rate of vegetables of 1.49E-03 kg/kg/day. and (2) Br_{grain} value was calculated by multiplying the uptake slope factor and the conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor of 2 x 10° g/ha soil. The uptake slope factors with a conversion factor of 2 x 10° g/ha soil. The uptake slope factors with a conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for grains/cereals. Br_{grain} $\frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by multiplying the uptake slope factor with a conversion factor of 2 x 10^9 g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for root vegetables. | B-2-10 | 6.40E-02 | | conversion factor were obtained from U.S. EPA (1992b) for leafy vegetables. $Br_{grain} = \frac{Br_{grain}}{(\frac{\mu g/g}{g})} DW \frac{B}{g} $ | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | conversion factor were obtained from U.S. EPA (1993e) for garden fruits. Br_{ag} value for vegetables was calculated by weighting the uptake slope factors for garden fruits (75%) and leafy vegetables (25%) and multiplying the result with a conversion factor of 2×10^9 g/ha soil. The uptake slope factors and the conversion factor were obtained from U.S. EPA (1993e). | B-2-9 | 1.25E-01 | | $\frac{(\mu g/g \ DW \ plant)}{\mu g/g \ soil}$ Conversion factor of 2 x 10° g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for grains/cereals. Bv_{ag} $\frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). Bv_{forage} $\frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ Metals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). $B-3-8$ NA $B-3-8$ NA | $Br_{forage} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by multiplying the uptake slope factor with a conversion factor of 2 x 10 ⁹ g/ha soil. The uptake slope factor and the conversion factor were obtained from U.S. EPA (1992b) for leafy vegetables. | B-3-8 | 3.64E-01 | | $\frac{(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})}{\frac{Bv_{forage}}{(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})}}{\frac{(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})}{\frac{B-3-8}{(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})}}$ Wetals are assumed to not experience air-to-leaf transfer, as cited in U.S. EPA (1995b). | $Br_{grain} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | conversion factor of 2 x 10 ⁹ g/ha soil. The uptake slope factor and the | B-3-8 | 6.20E-02 | | $\frac{(\mu g/g \ DW \ plant)}{\mu g/g \ air}$ U.S. EFA (1993b). | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | NA | | Riotransfer Factors for Animals | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | NA | | Dividuisted Factors for Annuals | | Biotransfer Factors for Animals | - | | #### CHEMICAL-SPECIFIC INPUTS FOR CADMIUM (7440-43-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{milk} (day/kg FW) | Ba_{milk} values were obtained from U.S. EPA (1995a) for cadmium, selenium, and zinc. Values were calculated by dividing uptake slopes, as cited in U.S. EPA (1992b; 1995a), by a daily consumption rate of 20 kilograms dry weight per day and converting the result to a wet weight basis assuming a 87% moisture content in milk. | B-3-11 | 6.50E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} values were obtained from U.S. EPA (1995a) for cadmium, selenium, and zinc. Values were calculated by dividing uptake slopes, as cited in U.S. EPA (1992b; 1995a), by a daily consumption rate of 20 kilograms dry weight per day and converting the result to a wet weight basis assuming a 70% moisture content in beef. | B-3-10 | 1.20E-04 | | Ba _{pork} (day/kg FW) | Ba_{pork} values were obtained from U.S. EPA (1995a) for cadmium, selenium, and zinc. Values were calculated by dividing uptake slopes, as cited in U.S. EPA (1992b; 1995a), by a daily consumption rate of 4.7 kilograms dry weight per day and converting the result to a wet weight basis assuming a 70% moisture content in pork. | B-3-12 | 1.91E-04 | | Ba_{egg} (day/kg FW) | Ba_{egg} values were
obtained from U.S. EPA (1995a) for cadmium, selenium, and zinc. Values were calculated by dividing uptake slopes, as cited in U.S. EPA (1992b; 1995a), by a daily consumption rate of 0.2 kilograms dry weight per day and converting the result to a wet weight basis assuming a 75% moisture content in eggs. | B-3-13 | 2.50E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ values were obtained from U.S. EPA (1995a) for cadmium, selenium, and zinc. Values were calculated by dividing uptake slopes, as cited in U.S. EPA (1992b; 1995a), by a daily consumption rate of 0.2 kilograms dry weight per day and converting the result to a wet weight basis assuming a 75% moisture content in chicken. | B-3-14 | 1.06E-01 | | BCF _{fish} (L/kg FW tissue) | Geometric mean value obtained from various literature sources (see Appendix A3.4). | B-4-26 | 2.50E+02 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | _ | _ | | RfD (water)
(mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 5.0E-04 | | RfD (food)
(mg/kg/day) | U.S. EPA (1997b) | | 1.0E-03 | | Oral CSF
(mg/kg/day) ⁻¹ | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-1-7 | 6.3E+00 | | RfC (mg/m ³) | Calculated from <i>RfD</i> (<i>food</i>) value using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 3.5E-03 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 1.8E-03 | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 6.3E+00 | Note: NA = Not applicable ND = No data available All parameters are defined in list of FATE AND TRANSPORT PARAMETERS on page A-3-iii. #### CHEMICAL-SPECIFIC INPUTS FOR CARBON DISULFIDE (75-15-0) **TABLE A-3-36** | Parameter | Reference and Explanation | Equations | Value | |--------------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 76.14 | | $T_{m}\left(\mathbf{K}\right)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 161.5 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 4.47E-01
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 2.67E+03 | | H (atm·m ³ /mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.27E-02 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.04E-01 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.29E-05 | | K _{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.00E+02 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans as cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 5.14E+01 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 5.14E-01 | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 3.86E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.06E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR CARBON DISULFIDE (75-15-0) | Chemical/Physical Properties (Continued) Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 1 | |---|---
---| | Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2; | 1 | | | B-3-2; B-4-2 | 0.0 | | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | Biotransfer Factors for Plants | | | | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.44E+01 | | $Br_{root veg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A3.4.2 of Appendix A-3). | B-2-10 | 2.79E+01 | | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.70E+00 | | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.70E+00 | | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 5.92E-04 | | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 5.92E-04 | | Biotransfer Factors for Animals | | | | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 7.94E-07 | | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.51E-06 | | | Biotransfer Factors for Plants RCF value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. Br _{root veg} value was calculated by dividing the RCF value with the Kd_s value provided in this table (see section A3.4.2 of Appendix A-3). Br _{oot} veg value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. Br _{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. Br _{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended values was calculated, for a temperature (T) of 25°C, by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for abo | value of Fv was calculated by using the Vp value that is provided in this table. B-2-7; B-2-8; B-3-1; B-3-8; B-4-1; B-4-8; B-4-12; B-5-1 Biotransfer Factors for Plants BCF value was calculated by using the correlation equation with K_{ov} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ov} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. BF _{rograver} value was calculated by dividing the RCF value with the Kd_v value provided in this table (see section A3.4.2 of Appendix A-3). B-2-10 Br _{ograver} value was calculated by using the correlation equation with K_{ov} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ov} value that is provided in this table. Br _{ograver} value was calculated by using the correlation equation with K_{ov} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ov} value that is provided in this table. Br _{ograver} value was calculated by using the correlation equation with K_{ov} and H that is cited in Bacci. Calamari, Gaggi, and Vighi (1990); and Bacci. Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the correlation equation with K_{ov} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, Gaggi, and Vighi (1990) and Bacci | #### CHEMICAL-SPECIFIC INPUTS FOR CARBON DISULFIDE (75-15-0) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A3.4.2 of Appendix A-3). | B-3-12 | 3.04E-06 | | Ba_{egg} (day/kg FW) | Ba_{eggs} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this
table. | B-3-13 | 7.94E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A3.4.3 of Appendix A-3). | B-3-14 | 1.98E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.95E+01 | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 1.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 7.00E-01 | | Inhalation URF (µg/m³)-1 | - | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR CARBON TETRACHLORIDE (56-23-5) | Parameter | Reference and Explanation | Equations | Value | |---|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 153.84 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 250.1 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 1.48E-01
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 7.92E+02 | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.87E-02 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.56E-02 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.77E-06 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 5.21E+02 | | K_{oc} (mL/g) | Geometric mean of measured values was obtained from U.S. EPA (1996b). | | 1.52E+02 | | <i>Kd</i> _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.52E+00 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.14E+01 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 6.08E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR CARBON TETRACHLORIDE (56-23-5) | Parameter | Reference and Explanation | Equations | Value | | | |--|---|--|----------|--|--| | | Chemical/Physical Properties (Continued) | | | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 7.03E-01 | | | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | | | Biotransfer Factors for Plants | | | | | | RCF $ \frac{(\mu g/g \ DW \ plant)}{\mu g/mL \ soil \ water} $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 3.50E+01 | | | | $Br_{root veg} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A3.4.2 of Appendix A-3). | B-2-10 | 2.30E+01 | | | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.04E+00 | | | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.04E+00 | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.52E-03 | | | | $Bv_{forage} $ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.52E-03 | | | | | Biotransfer Factors for Animals | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 4.14E-06 | | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.30E-05 | | | #### CHEMICAL-SPECIFIC INPUTS FOR CARBON TETRACHLORIDE (56-23-5) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A3.4.2 of Appendix A-3). | B-3-12 | 1.58E-05 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using
the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 4.14E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A3.4.3 of Appendix A-3). | B-3-14 | 1.03E-05 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). <i>BCF</i> values were geometric mean laboratory or field derived values obtained from various literature sources cited in U.S. EPA (1998)—See Appendix A-3. | B-4-26 | 3.00E+01 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 7.00E-04 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 1.30E-01 | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 2.50E-03 | | Inhalation URF (µg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 1.50E-05 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 5.30E-02 | Note: NA = Not applicable ND = No data available # TABLE A-3-38 CHEMICAL-SPECIFIC INPUTS FOR CHLORDANE (57-74-9) | | Chemical/Physical Properties | | | | | | |--------------------------------|---|---|--------------------------------|--|--|--| | _ | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 409.80 | | | | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 381.1 | | | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 3.55E-08
at 25°C
(solid) | | | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 5.51E-01 | | | | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.64E-05 | | | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.18E-02 | | | | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 4.37E-06 | | | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 8.66E+05 | | | | | K_{oc} (mL/g) | Geometric mean of measured values was obtained from U.S. EPA (1996b). | | 5.13E+04 | | | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 5.13E+02 | | | | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 3.85E+03 | | | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.05E+03 | | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.83E-01 | | | | | | Chemical/Physical Properties (Continued) | <u> </u> | 1 | | | | #### CHEMICAL-SPECIFIC INPUTS FOR CHLORDANE (57-74-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid-phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 0.997 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 8.67E+03 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table (see section A4.3.2 of Appendix A-3). | B-2-10 | 1.69E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.43E-02 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.43E-02 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 4.46E+03 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 4.46E+03 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 6.88E-03 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.17E-02 | | | Biotransfer Factors for Animals (Continued) | | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-12 | 2.63E-02 | ####
CHEMICAL-SPECIFIC INPUTS FOR CHLORDANE (57-74-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 6.88E+00 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A4.3.3 of Appendix A-3). | B-3-14 | 1.72E-02 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 6.07E-01 | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 5.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 3.50E-01 | | RfC (mg/m ³) | U.S.EPA (1997b) | C-2-3 | 7.00E-04 | | Inhalation URF
(μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 1.00E-04 | | Inhalation CSF
(mg/kg/day) ⁻¹ | Value based on <i>Oral CSF</i> assuming route-to-route extrapolation. | C-2-2 | 3.50E-01 | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR CHLORINE (7782-50-5) **TABLE A-3-39** | Parameter | Reference and Explanation | Equations | Value | | | |----------------------------|--|---|----------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 71.90 | | | | T_m (°K) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 172.1 | | | | Vp (atm) | | | ND | | | | S (mg/L) | | | ND | | | | H (atm·m³/mol) | | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | ND | | | | D_a (cm ² /s) | | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.10E-01 | | | | D_w (cm ² /s) | | B-4-20 | 1.27E-05 | | | | K_{ow} (unitless) | | | NA | | | | K_{oc} (mL/g) | | | NA | | | | Kd_s (mL/g) | | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | ND | | | | Kd_{sw} (L/Kg) | | B-4-16; B-4-18;
B-4-24 | ND | | | | Kd_{bs} (mL/g) | | B-4-16; B-4-25 | ND | | | | ksg (year)-1 | | B-1-2; B-2-2;
B-3-2; B-4-2 | ND | | | | Fv (unitless) | Because they are nonvolatile, metals are assumed to be 100 percent in particulate phase and zero percent in the vapor phase, as cited in U.S. EPA (1994f). | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | # TABLE A-3-39 CHEMICAL-SPECIFIC INPUTS FOR CHLORINE (7782-50-5) | Parameter | Reference and Explanation | Equations | Value | | | |--|--|-----------|----------|--|--| | | Biotransfer Factors for Plants | | | | | | RCF $(\frac{\mu g/g \ WW \ plant}{\mu g/mL \ soil \ water})$ | | B-2-10 | ND | | | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | | B-2-10 | ND | | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | | B-2-9 | ND | | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | | B-3-9 | ND | | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | NA | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | NA | | | | | Biotransfer Factors for Animals | | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all inorganics, except cadmium, mercury, selenium, and zinc. | B-3-11 | 1.50E-02 | | | | Ba _{beef} (day/kg FW) | Ba_{beef} values were obtained from Baes, Sharp, Sjoreen, and Shor (1984) for all inorganics, except cadmium, mercury, selenium, and zinc. | B-3-10 | 8.00E-02 | | | | Ba _{pork} (day/kg FW) | | B-3-12 | ND | | | | BCF _{egg} (day/kg FW) | | B-3-13 | ND | | | | BCF _{chick} (day/kg FW) | | B-3-14 | ND | | | | BCF _{fish} (L/kg FW) | | B-4-26 | ND | | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | #### CHEMICAL-SPECIFIC INPUTS FOR CHLORINE (7782-50-5) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|---------| | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA 1994e or U.S. EPA 1995c | C-1-8 | 1.0E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m ³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 3.5E-01 | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: CHEMICAL-SPECIFIC INPUTS FOR 4-CHLORO-3-METHYLPHENOL (59-50-7) #### Parameter Reference and Explanation **Equations** Value **Chemical/Physical Properties** Budavari, O'Neil, Smith, and Heckelman (1989) 142.58 MW (g/mole) 328.6 $T_m(K)$ Budavari, O'Neil, Smith, and Heckelman (1989) ND Vp (atm) U.S.EPA (1992a) 3.85E+03S (mg/L)B-1-6; B-2-6; ND $H (atm \cdot m^3/mol)$ B-2-8; B-3-6; B-4-6; B-4-12; B-4-19 D_a (cm²/s) D_a value was calculated using the equation cited in U.S. EPA (1996a). B-1-6; B-2-6; 6.96E-02 B-3-6; B-4-6; B-4-21 B-4-20 8.06E-06 D_{w} (cm²/s) D_{w} value was calculated using the equation cited in U.S. EPA (1996a). K_{ow} (unitless) Arithmetic mean value cited in Karickhoff and Long (1995). 1.26E+03 K_{oc} (mL/g) K_{oc} value was calculated by using the correlation equation with K_{ov} for 3.71E+03by that alter and PAHs, all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. B-1-3; B-1-4; B-1-5; B-1-6; B-2-3; B-2-4; Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Kd_s (cm³/g) 3.71E+01 Measured organic carbon in soil, specific to site conditions, should be used to B-2-5; B-2-6; B-3-3; B-3-4; calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value B-3-5; B-3-6; that is provided in this table. B-4-3; B-4-4; B-4-5; B-4-6; B-4-10; B-4-11 Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in Kd_{sw} (L/Kg) B-4-16; 2.78E+02 B-4-18; B-4-24 suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{ac} value that is provided in this table. Kd_{hs} value was calculated by using the correlation equation with K_{oc} that is cited B-4-16; B-4-25 1.48E+02 Kd_{bs} (cm³/g) in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{ac} value that is provided in this table. **Chemical/Physical Properties (Continued)** 1.10E+01ksg (year)-1 Ksg value was calculated by using the chemical half-life in soil, as cited in B-1-1; B-1-2; B-2-1; B-2-2; B-3-1; B-3-2; Lucius (1992). B-4-1; B-4-2 Fv (unitless) B-1-1; B-2-1; ND #### CHEMICAL-SPECIFIC INPUTS FOR 4-CHLORO-3-METHYLPHENOL (59-50-7) | Parameter | Reference and Explanation | Equations | Value | |--|--|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | | 6.30E+01 | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.70E+00 | | $Br_{ag} = \frac{\mu g/g \ DW \ plant}{\mu g/g \ soil}$ | Br_{ag} value was
calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 6.25E-01 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 6.25E-01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-2-8 | ND | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | | B-3-8 | ND | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.00E-05 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.16E-05 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.83E-05 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.00E-02 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.50E-05 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.34E+02 | #### CHEMICAL-SPECIFIC INPUTS FOR 4-CHLORO-3-METHYLPHENOL (59-50-7) | Parameter | Reference and Explanation | Equations | Value | | |---|---------------------------|-----------|-------|--| | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | | C-1-8 | ND | | | Oral CSF (mg/kg/day)-1 | | C-1-7 | ND | | | RfC (mg/m³) | | C-2-3 | ND | | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | | Inhalation CSF
(mg/kg/day) ⁻¹ | - | C-2-2 | ND | | Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR P-CHLOROANILINE (106-47-8) **TABLE A-3-41** | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|--| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 127.57 | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 345.6 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 3.09E-05
at 25°C
(solid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 3.36E+03 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.17E-06 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 4.80E-02 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.02E-05 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 7.40E+01 | | K_{oc} (mL/g) | For all ionizing organics, K_{oc} values were estimated on the basis of pH. Estimated values were obtained from U.S. EPA (1994c). | | K _{oc} is 41 for pH range of 4.9 to 8 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 4.06E-01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 3.05E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.63E+00 | | _ | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was assumed to be 0 due a a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that | B-1-1; B-2-1;
B-2-7; B-2-8; | 1.0 | ## CHEMICAL-SPECIFIC INPUTS FOR P-CHLOROANILINE (106-47-8) **TABLE A-3-41** | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.27E+01 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 3.12E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 3.22E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 3.22E+00 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 4.66E+00 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in
Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 4.66E+00 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 5.88E-07 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.86E-06 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 2.25E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 5.88E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.47E-06 | #### CHEMICAL-SPECIFIC INPUTS FOR P-CHLOROANILINE (106-47-8) | Parameter | Reference and Explanation | Equations | Value | | |---|---|-----------|----------|--| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.55E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 4.00E-03 | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.40E-02 | | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | | Note: NA= Not applicable ND= No data available ## CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZENE (108-90-7) **TABLE A-3-42** | Parameter | Reference and Explanation | Equations | Value | | |--------------------------------|---|---|---------------------------------|--| | | Chemical/Physical Properties | | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 112.56 | | | $T_m(K)$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 228.1 | | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 1.59E-02
at 25°C
(liquid) | | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 4.09E+02 | | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 4.38E-03 | | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 6.35E-02 | | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.49E-06 | | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c) | | 6.16E+02 | | | K_{oc} (mL/g) | Geometric mean of measured values obtained from U.S. EPA (1996b). | | 2.24E+02 | | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 2.24E+00 | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.68E+01 | | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 8.96E+00 | | | ksg (year) ⁻¹ | ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.69E+00 | | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZENE (108-90-7) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 3.90E+01 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.74E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 9.45E-01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for abovegroud produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 9.45E-01 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.19E-02 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi,
Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.19E-02 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 4.89E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.55E-05 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.87E-05 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 4.89E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.22E-05 | | | Biotransfer Factors for Animals (Continued) | | | #### **CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZENE (108-90-7)** | Parameter | Reference and Explanation | Equations | Value | | |--|---|-----------|----------|--| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 7.76E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.0E-02 | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | RfC (mg/m ³) | U.S. EPA (1997c) | C-2-3 | 2.0E-02 | | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | | Note: NA= Not applicable ND= No data available #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZILATE (510-15-6) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 325.20 | | $T_m(\mathbf{K})$ | Howard (1989-1993) | | 309.0 | | Vp (atm) | Howard (1989-1993) | | 2.90E-09
at 25°C
(solid) | | S (mg/L) | Howard (1989-1993) | | 1.30E+01 | | <i>H</i> (atm⋅m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 7.24E-08 | | D_a (cm ² /s) | D_a value was obtained from WATER8 model database (U.S. EPA 1995d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.65E-02 | | D_w (cm ² /s) | $D_{\rm w}$ value was obtained from WATER8 model database (U.S. EPA 1995d). | B-4-20 | 4.72E-06 | | K _{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 2.40E+04 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 3.69E+03 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 3.69E+01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 2.77E+02 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.48E+02 | | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 7.23E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman | B-1-1; B-2-1; | 8.62E-01 | #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZILATE (510-15-6) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $ (\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water}) $ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 5.54E+02 | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.50E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.14E-01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 1.14E-01 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 3.57E+04 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No
distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 3.57E+04 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.91E-04 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 6.03E-04 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 7.29E-04 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.91E-01 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 4.76E-04 | #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROBENZILATE (510-15-6) | Parameter | Reference and Explanation | Equations | Value | |---|--|-----------|----------| | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). FCM s were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 2.03E+03 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 2.0E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1995b) | C-1-7 | 2.7E-01 | | RfC (mg/m³) | Calculated from RfD using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 7.0E-02 | | Inhalation URF
(μg/m³) ⁻¹ | U.S. EPA (1997c) | C-2-1 | 7.8E-06 | | Inhalation CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 2.7E-01 | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR CHLORODIFLUOROMETHANE (75-45-6) | Parameter | Reference and Explanation | Equations | Value | | | |--------------------------------------|---|---|-----------------------------|--|--| | | Chemical/Physical Properties | | | | | | MW (g/mole) | Howard 1989-1993 | | 86.47 | | | | $T_m(\mathbf{K})$ | Howard 1989-1993 | | 126.6 | | | | Vp (atm) | Vp value cited in Howard 1989-1993. | | 5.63
at 25°C
(liquid) | | | | S (mg/L) | Howard 1989-1993 | | 2.90E+03 | | | | <i>H</i> (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.68E-01 | | | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 9.72E-02 | | | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 1.13E-05 | | | | K_{ow} (unitless) | Calculated using the log K_{ow} value cited in Howard 1989-1993. | | 1.20E+01 | | | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 9.83E+00 | | | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 9.83E-02 | | | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18;
B-4-24 | 9.83E-04 | | | | | Chemical/Physical Properties (Continued) | - | • | | | #### CHEMICAL-SPECIFIC INPUTS FOR CHLORODIFLUOROMETHANE (75-45-6) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-25 | 3.93E-01 | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991) OR Howard (1989-1993) OR Mackay, Shiu, and Ma (1992). | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in the table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 7.88E+00 | | $Br_{root veg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{root veg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 8.01E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 9.21E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 9.21E+00 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari,
Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 4.69E-06 | | | Biotransfer Factors for Plants (continued) | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 4.69E-06 | #### CHEMICAL-SPECIFIC INPUTS FOR CHLORODIFLUOROMETHANE (75-45-6) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 9.53E-08 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.01E-07 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.65E-07 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 9.53E-05 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.38E-07 | | BCF _{fish} (L/kg, FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 3.89E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | Calculated from <i>RfC</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-1-8 | 1.40E+01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 5.00+01 | | <i>Inhalation URF</i> (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROETHANE (75-00-3) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 64.52 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 441.8 | | Vp (atm) | Vp value cited in Lucius et al. (1992). | | 159.88
at 25°C
(solid) | | S (mg/L) | S value cited in U.S. EPA (1994a) | | 5.74E+03 | | H (atm⋅m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.80 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 1.27E-01 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.53E-06 | | K_{ow} (unitless) | K_{ow} value calculated from log K_{ow} value cited in U.S. EPA (1995a). | | 1.26E+03 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 3.71E+02 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 3.71E+00 | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 2.78E+01 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 1.48E+01 | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 6.72E+02 | | Fv (unitless) | F_V value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of F_V was calculated by using T_m and V_p values that | B-1-1; B-2-1;
B-2-7; B-2-8; | 1.00 | #### **CHEMICAL-SPECIFIC INPUTS FOR CHLOROETHANE (75-00-3)** | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then ocnverted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 6.30E+01 | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.70E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 6.25E-01 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 6.25E-01 | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was
calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 6.05E-05 | | Bv_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 6.05E-05 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.00E-05 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.16E-05 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.83E-05 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.00E-02 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.50E-05 | #### **CHEMICAL-SPECIFIC INPUTS FOR CHLOROETHANE (75-00-3)** | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 1.34E+02 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | | | | | RfD (mg/kg/day) | U.S.EPA (1997a) | C-1-8 | 4.00E-01 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m ³) | U.S. EPA (1997b) | C-2-3 | 1.00E+01 | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROFORM (67-66-3) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neil, Smith, and Heckelman (1989) | | 119.39 | | $T_m(\mathbf{K})$ | Budavari, O'Neil, Smith, and Heckelman (1989) | | 209.6 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | | 2.69E-01
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | | 7.96E+03 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 4.03E-03 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 5.17E-02 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 1.09E-05 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 8.90E+01 | | K_{oc} (mL/g) | Geometric mean of measured values was obtained from U.S. EPA (1996b). | | 5.30E+01 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 5.30E-01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 3.98E+00 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.12E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROFORM (67-66-3) | Parameter | Reference and Explanation | Equations | Value | |--|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was calculated by using the chemical half-life in soil, as cited in Howard, Boethling, Jarvis, Meylan, and Michalenko (1991). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.41E+00 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.37E+01 | | $Br_{rootveg}$ $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the <i>RCF</i> value with the Kd_s value provided in this table (see section A4.3.2 of Appendix A-3). | B-2-10 | 2.58E+01 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.89E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 2.89E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated
by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25 °C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 1.65E-03 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 1.65E-03 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 7.07E-07 | #### CHEMICAL-SPECIFIC INPUTS FOR CHLOROFORM (67-66-3) | Parameter | Reference and Explanation | Equations | Value | |--|---|-----------|----------| | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.23E-06 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using thethe fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value (see section A4.3.2 of Appendix A-3). | B-3-12 | 2.71E-06 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 7.07E-04 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value (see section A4.3.3 of Appendix A-3). | B-3-14 | 1.76E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). <i>BCF</i> values were geometric mean laboratory or field derived values obtained from various literature sources cited in U.S. EPA (1998)—See Appendix A-3. | B-4-26 | 3.59E+00 | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 1.00E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | U.S. EPA (1997b) | C-1-7 | 6.10E-03 | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 3.50E-02 | | Inhalation URF (μg/m³) ⁻¹ | U.S. EPA (1997b) | C-2-1 | 2.30E-05 | | Inhalation CSF (mg/kg/day) ⁻¹ | U.S. EPA (1997c) | C-2-2 | 8.10E-02 | #### Note: NA = Not applicable ND = No data available ## CHEMICAL-SPECIFIC INPUTS FOR (BIS)-1,2-CHLOROISOPROPYLETHER (39638-32-9) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 171.07 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 369.9 | | Vp (atm) | Montgomery and Welkom (1991) | | 7.00E-03
at 25°C
(solid) | | S (mg/L) | Montgomery and Welkom (1991) | | 1.70E+03 | | H (atm⋅m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 7.04E-04 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.61E-02 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 7.38E-06 | | K _{ow} (unitless) | K_{ow} value cited in Howard (1989 - 1993). | | 3.80E+02 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 1.46E+02 | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 1.46E+00 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 1.46E-02 | | | Chemical/Physical Properties (Continued) | | | ## CHEMICAL-SPECIFIC INPUTS FOR (BIS)-1,2-CHLOROISOPROPYLETHER (39638-32-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|--|----------| | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 5.82E+00 | | ksg (year) ⁻¹ | Ksg value was calculated by using the chemical half-life in soil, as cited in Mackay, Shiu, and Ma (1992). | B-1-2; B-2-2;
B-3-2; B-4-2 | 1.41E+00 | | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using T_m and Vp values that are provided in this table. Vp value for this compound was converted to a liquid phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 2.88E+01 | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootyeg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.98E+01 | | $Br_{ag} = \frac{(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})}{\frac{\mu g/g \ soil}{\mu g/g \ soil}}$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No
distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 1.25E+00 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-9 | 4.44-02 | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 4.44E-02 | | | Biotransfer Factors for Animals | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 3.02E-06 | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 9.55E-06 | ## CHEMICAL-SPECIFIC INPUTS FOR (BIS)-1,2-CHLOROISOPROPYLETHER (39638-32-9) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.16E-05 | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 3.02E-03 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 7.54E-06 | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 5.38E+01 | | BAF _{fish} (L/kg FW) | - | B-4-27 | NA | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 4.0E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.4E-01 | | Inhalation URF
(μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicableND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLORONAPHTHALENE (91-58-7) | Parameter | Reference and Explanation | Equations | Value | |--|---|---|--------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Budavari, O'Neill, Smith, and Heckelman (1989) | | 162.61 | | $T_m(K)$ | Budavari, O'Neill, Smith, and Heckelman (1989) | | 332.6 | | Vp (atm) | Vp value cited in U.S. EPA (1995b). | | 1.05E-05
at 25°C
(solid) | | S (mg/L) | S value cited in U.S. EPA (1995b). | | 1.20E+01 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.43E-04 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.64E-02 | | D_w (cm ² /s) | D_w value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 8.24E-06 | | K_{ow} (unitless) | Montgomery and Welkom (1991) | | 1.17E+04 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs as cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 7.14E+03 | | <i>Kd_s</i> (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 7.14E+01 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 5.36E+02 | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.86E+02 | | | Chemical/Physical Properties (Continued) | | | | ksg (year)-1 | Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLORONAPHTHALENE (91-58-7) | Parameter | Reference and Explanation | Equations | Value | | |---|---|--|----------|--| | Fv (unitless) | Fv value was calculated by using equations cited in Junge (1977) and Bidleman (1988). Recommended value of Fv was calculated by using S , T_m , and Vp values that are provided in this table. Vp value for this compound was converted to a liquid phase value before being used in the calculations. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | | Biotransfer Factors for Plants | | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 3.23E+02 | | | $Br_{rootveg} \\ (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-9; B-2-10;
B-3-9 | 4.51E+00 | | | $Br_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the
K_{ow} value that is provided in this table. | B-2-9 | 1.72E-01 | | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-10 | 1.72E-01 | | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-9 | 8.46E+00 | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-9 | 8.46E+00 | | | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 9.33E-05 | | #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLORONAPHTHALENE (91-58-7) | Parameter | Reference and Explanation | Equations | Value | |---|---|-----------|----------| | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 2.95E-04 | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 3.57E-04 | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 9.33E-02 | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.33E-04 | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . BCF s were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 9.60E+02 | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | RfD (mg/kg/day) | U.S. EPA (1997a) | C-1-8 | 8.00E-02 | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | RfC (mg/m³) | Calculated from RfD using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 2.80E-01 | | Inhalation URF (μg/m³) ⁻¹ | | C-2-1 | ND | | Inhalation CSF
(mg/kg/day) ⁻¹ | | C-2-2 | ND | Note: NA = Not applicable ND = No data available #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLOROPHENOL (95-57-8) | Parameter | Reference and Explanation | Equations | Value | |--------------------------------------|---|---|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 128.56 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 282.1 | | Vp (atm) | Geometric mean value cited in U.S. EPA (1994c). | - | 2.77E-03
at 25°C
(liquid) | | S (mg/L) | Geometric mean value cited in U.S. EPA (1994c). | - | 2.15E+04 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW, S, and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 1.66E-05 | | D_a (cm ² /s) | D_a value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 5.01E-02 | | D_w (cm ² /s) | $D_{\scriptscriptstyle W}$ value was obtained from CHEMDAT8 database (U.S. EPA 1994d). | B-4-20 | 9.46E-06 | | K_{ow} (unitless) | Geometric mean value cited in U.S. EPA (1994c). | | 1.45E+02 | | K_{oc} (mL/g) | For all ionizing organics, K_{oc} values were estimated on the basis of pH. Estimated values were obtained from U.S. EPA (1994c). | | pH | | Kd _s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed fraction organic carbon of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table for a pH of 7.0. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-2-10; B-3-3;
B-3-4; B-3-5;
B-3-6; B-4-3;
B-4-4; B-4-5;
B-4-6; B-4-10;
B-4-11 | 3.87E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLOROPHENOL (95-57-8) | Parameter | Reference and Explanation | Equations | Value | |--|---|--|----------| | Chemical/Physical Properties (Continued) | | | | | Kd_{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table for a pH of 7.0. | B-4-16;
B-4-18; B-4-24 | 2.90E+01 | | Kd_{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies depending on the fraction of organic fraction in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table for a pH of 7.0. | B-4-16; B-4-25 | 1.55E+01 | | ksg (year) ⁻¹ | Ksg value was assumed to be 0 due to a lack of data. | B-1-2; B-2-2;
B-3-2; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value that is provided in this table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.0 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was converted to a dry weight basis by using a moisture content of 87 percent. | B-2-10 | 1.70E+01 | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the
Kd_s value provided in this table. | B-2-9; B-2-10;
B-3-9 | 4.40E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 2.18E+00 | | Br_{forage} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-10 | 2.18E+00 | #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLOROPHENOL (95-57-8) | Parameter | Reference and Explanation | Equations | Value | | |--|---|-----------|----------|--| | Biotransfer Factors for Plants (Continued) | | | | | | Bv_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-9 | 6.76E-01 | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100, as recommended by U.S. EPA (1993d). No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 6.76E-01 | | | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 1.15E-06 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 3.64E-06 | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 4.41E-06 | | | Ba _{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 1.15E-03 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 2.88E-06 | | | BCF _{fish} (L/kg FW tissue) | <i>BCFs</i> were used for compounds with a log K_{ow} value below 4.0, as cited in U.S. EPA (1995b). BCF_{fish} value calculated using the correlation equation with K_{ow} obtained from Veith, Macek, Petrocelli, and Caroll (1980)—See Appendix A-3. | B-4-26 | 2.59E+01 | | | BAF _{fish} (L/kg FW) | | B-4-27 | NA | | | $BSAF_{fish}$ (unitless) | | B-4-28 | NA | | | Health Benchmarks | | | | | | RfD (mg/kg/day) | U.S. EPA (1997b) | C-1-8 | 5.00E-03 | | | Oral CSF
(mg/kg/day) ⁻¹ | | C-1-7 | ND | | | RfC (mg/m³) | Calculated from <i>RfD</i> using an inhalation rate of 20 m ³ /day and a human body weight of 70 kg. | C-2-3 | 1.80E-02 | | | Inhalation URF (µg/m³)-1 | | C-2-1 | ND | | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | | Note: NA= Not applicable ND= No data available #### CHEMICAL-SPECIFIC INPUTS FOR 2-CHLOROPHENOL (95-57-8) ## CHEMICAL-SPECIFIC INPUTS FOR 3-CHLOROPHENYL-PHENYLETHER (7005-72-3) | Parameter | Reference and Explanation | Equations | Value | |-----------------------------|---|--|---------------------------------| | | Chemical/Physical Properties | | | | MW (g/mole) | Montgomery and Welkom (1991) | | 204.66 | | $T_m(\mathbf{K})$ | Montgomery and Welkom (1991) | | 265.1 | | Vp (atm) | Vp value cited in Montgomery and Welkom (1991). | | 3.55E-06
at 25°C
(liquid) | | S (mg/L) | S value cited in Montgomery and Welkom (1991). | | 3.30E+00 | | H (atm·m³/mol) | H value was calculated by using the theoretical equation from Lyman, Reehl, and Rosenblatt (1982), which defines the constant. Recommended value was calculated by using the MW , S , and Vp values that are provided in this table. | B-1-6; B-2-6;
B-2-8; B-3-6;
B-4-6; B-4-12;
B-4-19 | 2.20E-04 | | D_a (cm ² /s) | D_a value was calculated using the equation cited in U.S. EPA (1996a). | B-1-6; B-2-6;
B-3-6; B-4-6;
B-4-21 | 3.82E-02 | | D_w (cm ² /s) | $D_{\rm w}$ value was calculated using the equation cited in U.S. EPA (1996a). | B-4-20 | 4.42E-06 | | K_{ow} (unitless) | Arithmetic mean value cited in Karickhoff and Long (1995). | | 5.85E+04 | | K_{oc} (mL/g) | K_{oc} value was calculated by using the correlation equation with K_{ow} for phthalates and PAHs, / all nonionizing organics except phthalates, PAHs, dioxins, and furans, cited in U.S. EPA (1994c). K_{oc} value was calculated by using the recommended K_{ow} value that is provided in this table. | | 7.40E+04 | | Kd_s (cm ³ /g) | Kd_s value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.01 in soil. Measured organic carbon in soil, specific to site conditions, should be used to calculate Kd_s , because the value varies, depending on the fraction of organic carbon in soil. Recommended Kd_s value was calculated by using the K_{oc} value that is provided in this table. | B-1-3; B-1-4;
B-1-5; B-1-6;
B-2-3; B-2-4;
B-2-5; B-2-6;
B-3-3; B-3-4;
B-3-5; B-3-6;
B-4-3; B-4-4;
B-4-5; B-4-6;
B-4-10; B-4-11 | 7.40E+02 | | Kd _{sw} (L/Kg) | Kd_{sw} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.075 in suspended sediment. Measured organic carbon in suspended sediment, specific to site conditions, should be used to calculate Kd_{sw} , because the value varies, depending on the fraction of organic carbon in suspended sediment. Recommended Kd_{sw} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16;
B-4-18; B-4-24 | 5.55E+03 | ## CHEMICAL-SPECIFIC INPUTS FOR 3-CHLOROPHENYL-PHENYLETHER (7005-72-3) | Parameter | Reference and Explanation | Equations | Value | |--|---|--|----------| | | Chemical/Physical Properties (Continued) | | | | Kd _{bs} (cm ³ /g) | Kd_{bs} value was calculated by using the correlation equation with K_{oc} that is cited in U.S. EPA (1993d) for an assumed organic carbon fraction of 0.04 in bottom sediment. Measured organic carbon in bottom sediment, specific to site conditions, should be used to calculate Kd_{bs} , because the value varies, depending on the fraction of organic carbon in bottom sediment. Recommended Kd_{bs} value was calculated by using the K_{oc} value that is provided in this table. | B-4-16; B-4-25 | 2.96E+03 | | ksg (year) ⁻¹ | Ksg value was assumed to be zero due to a lack of data. | B-1-1; B-1-2;
B-2-1; B-2-2;
B-3-1; B-3-2;
B-4-1; B-4-2 | 0.0 | | Fv (unitless) | Fv value was calculated by using the equation cited in Junge (1977). Recommended value of Fv was calculated by using the Vp value
that is provided in the table. | B-1-1; B-2-1;
B-2-7; B-2-8;
B-3-1; B-3-7;
B-3-8; B-4-1;
B-4-8; B-4-9;
B-4-12; B-5-1 | 1.00 | | | Biotransfer Factors for Plants | | | | RCF $(\frac{\mu g/g \ DW \ plant}{\mu g/mL \ soil \ water})$ | <i>RCF</i> value was calculated by using the correlation equation with K_{ow} that is cited in Briggs (1982). Recommended value was calculated by using the K_{ow} value that is provided in this table. The value was then converted to a dry weight basis by using a moisture content of 87 percent. | | 1.09E+03 | | $Br_{rootveg} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | $Br_{rootveg}$ value was calculated by dividing the RCF value with the Kd_s value provided in this table. | B-2-10 | 1.48E+00 | | Br_{ag} $(\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{ag} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-2-9 | 6.80E-02 | | $Br_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ soil})$ | Br_{forage} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). No distinction was made between values for aboveground produce and forage. Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-9 | 6.80E-02 | | $Bv_{ag} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{ag} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-2-8 | 3.03E+01 | ## CHEMICAL-SPECIFIC INPUTS FOR 3-CHLOROPHENYL-PHENYLETHER (7005-72-3) | Parameter | Reference and Explanation | Equations | Value | | |--|---|-----------|----------|--| | Biotransfer Factors for Plants (Continued) | | | | | | $Bv_{forage} = (\frac{\mu g/g \ DW \ plant}{\mu g/g \ air})$ | Bv_{forage} value was calculated by using the correlation equation with K_{ow} and H that is cited in Bacci, Calamari, Gaggi, and Vighi (1990); and Bacci, Cerejeira, Gaggi, Chemello, Calamari, and Vighi (1992); then reducing this value by a factor of 100. No distinction was made between values for aboveground produce and forage. Recommended value was calculated, for a temperature (T) of 25°C, by using the H and K_{ow} values that are provided in this table. | B-3-8 | 3.03E+01 | | | | Biotransfer Factors for Animals | | | | | Ba _{milk} (day/kg FW) | Ba_{milk} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-11 | 4.65E-04 | | | Ba _{beef} (day/kg FW) | Ba_{beef} value was calculated by using the correlation equation with K_{ow} that is cited in Travis and Arms (1988). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-10 | 1.47E-03 | | | Ba _{pork} (day/kg FW) | Ba_{pork} value was calculated by using the fat content ratio of pork to beef (23/19) and multiplying it with the Ba_{beef} value. | B-3-12 | 1.78E-03 | | | Ba_{egg} (day/kg FW) | Ba_{egg} value was calculated by using the correlation equation with K_{ow} that is cited in California EPA (1993). Recommended value was calculated by using the K_{ow} value that is provided in this table. | B-3-13 | 4.65E-01 | | | Ba _{chicken} (day/kg FW) | $Ba_{chicken}$ value was calculated by using the fat content ratio of chicken to beef (15/19) and multiplying it with the Ba_{beef} value. | B-3-14 | 1.16E-03 | | | BCF _{fish} (L/kg FW tissue) | | B-4-26 | NA | | | BAF _{fish} (L/kg FW) | $BAFs$ were used for compounds with a log K_{ow} value above 4.0, as cited in U.S. EPA (1995b). BAF values were predicted values calculated by multiplying a food chain multiplier (FCM) with an estimated BCF . $BCFs$ were estimated using the correlation equation obtained from Veith, Macek, Petrocelli, and Caroll (1980). $FCMs$ were obtained from U.S. EPA (1995bc)—See Appendix A-3. | B-4-27 | 6.06E+03 | | | $BSAF_{fish}$ (unitless) | - | B-4-28 | NA | | | | Health Benchmarks | | | | | RfD (mg/kg/day) | | C-1-8 | ND | | | Oral CSF (mg/kg/day)-1 | | C-1-7 | ND | | | RfC (mg/m ³) | | C-2-3 | ND | | | Inhalation URF (µg/m³) ⁻¹ | | C-2-1 | ND | | | Inhalation CSF (mg/kg/day) ⁻¹ | | C-2-2 | ND | | ## CHEMICAL-SPECIFIC INPUTS FOR 3-CHLOROPHENYL-PHENYLETHER (7005-72-3) Note: NA = Not applicable ND = No data available